Robust Hyperspectral Image Panshapring via Sparse Spatial-Spectral Representation
- URL: http://arxiv.org/abs/2501.07953v1
- Date: Tue, 14 Jan 2025 09:09:14 GMT
- Title: Robust Hyperspectral Image Panshapring via Sparse Spatial-Spectral Representation
- Authors: Chia-Ming Lee, Yu-Fan Lin, Li-Wei Kang, Chih-Chung Hsu,
- Abstract summary: S$3$RNet is a novel framework for hyperspectral image pansharpening.
It combines low-resolution hyperspectral images (LRHSI) with high-resolution multispectral images (HRMSI) through sparse spatial-spectral representation.
S$3$RNet achieves state-of-the-art performance across multiple evaluation metrics.
- Score: 9.3350274016294
- License:
- Abstract: High-resolution hyperspectral imaging plays a crucial role in various remote sensing applications, yet its acquisition often faces fundamental limitations due to hardware constraints. This paper introduces S$^{3}$RNet, a novel framework for hyperspectral image pansharpening that effectively combines low-resolution hyperspectral images (LRHSI) with high-resolution multispectral images (HRMSI) through sparse spatial-spectral representation. The core of S$^{3}$RNet is the Multi-Branch Fusion Network (MBFN), which employs parallel branches to capture complementary features at different spatial and spectral scales. Unlike traditional approaches that treat all features equally, our Spatial-Spectral Attention Weight Block (SSAWB) dynamically adjusts feature weights to maintain sparse representation while suppressing noise and redundancy. To enhance feature propagation, we incorporate the Dense Feature Aggregation Block (DFAB), which efficiently aggregates inputted features through dense connectivity patterns. This integrated design enables S$^{3}$RNet to selectively emphasize the most informative features from differnt scale while maintaining computational efficiency. Comprehensive experiments demonstrate that S$^{3}$RNet achieves state-of-the-art performance across multiple evaluation metrics, showing particular strength in maintaining high reconstruction quality even under challenging noise conditions. The code will be made publicly available.
Related papers
- Deep Diversity-Enhanced Feature Representation of Hyperspectral Images [87.47202258194719]
We rectify 3D convolution by modifying its topology to enhance the rank upper-bound.
We also propose a novel diversity-aware regularization (DA-Reg) term that acts on the feature maps to maximize independence among elements.
To demonstrate the superiority of the proposed Re$3$-ConvSet and DA-Reg, we apply them to various HS image processing and analysis tasks.
arXiv Detail & Related papers (2023-01-15T16:19:18Z) - Deep Posterior Distribution-based Embedding for Hyperspectral Image
Super-resolution [75.24345439401166]
This paper focuses on how to embed the high-dimensional spatial-spectral information of hyperspectral (HS) images efficiently and effectively.
We formulate HS embedding as an approximation of the posterior distribution of a set of carefully-defined HS embedding events.
Then, we incorporate the proposed feature embedding scheme into a source-consistent super-resolution framework that is physically-interpretable.
Experiments over three common benchmark datasets demonstrate that PDE-Net achieves superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-30T06:59:01Z) - Asymmetric CNN for image super-resolution [102.96131810686231]
Deep convolutional neural networks (CNNs) have been widely applied for low-level vision over the past five years.
We propose an asymmetric CNN (ACNet) comprising an asymmetric block (AB), a mem?ory enhancement block (MEB) and a high-frequency feature enhancement block (HFFEB) for image super-resolution.
Our ACNet can effectively address single image super-resolution (SISR), blind SISR and blind SISR of blind noise problems.
arXiv Detail & Related papers (2021-03-25T07:10:46Z) - Lightweight Image Super-Resolution with Multi-scale Feature Interaction
Network [15.846394239848959]
We present a lightweight multi-scale feature interaction network (MSFIN)
For lightweight SISR, MSFIN expands the receptive field and adequately exploits the informative features of the low-resolution observed images.
Our proposed MSFIN can achieve comparable performance against the state-of-the-arts with a more lightweight model.
arXiv Detail & Related papers (2021-03-24T07:25:21Z) - Hyperspectral Image Super-resolution via Deep Progressive Zero-centric
Residual Learning [62.52242684874278]
Cross-modality distribution of spatial and spectral information makes the problem challenging.
We propose a novel textitlightweight deep neural network-based framework, namely PZRes-Net.
Our framework learns a high resolution and textitzero-centric residual image, which contains high-frequency spatial details of the scene.
arXiv Detail & Related papers (2020-06-18T06:32:11Z) - Hyperspectral Image Super-resolution via Deep Spatio-spectral
Convolutional Neural Networks [32.10057746890683]
We propose a simple and efficient architecture for deep convolutional neural networks to fuse a low-resolution hyperspectral image and a high-resolution multispectral image.
The proposed network architecture achieves best performance compared with recent state-of-the-art hyperspectral image super-resolution approaches.
arXiv Detail & Related papers (2020-05-29T05:56:50Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.