論文の概要: V-Trans4Style: Visual Transition Recommendation for Video Production Style Adaptation
- arxiv url: http://arxiv.org/abs/2501.07983v1
- Date: Tue, 14 Jan 2025 10:06:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:29:17.285577
- Title: V-Trans4Style: Visual Transition Recommendation for Video Production Style Adaptation
- Title(参考訳): V-Trans4Style:ビデオ制作スタイル適応のための視覚遷移勧告
- Authors: Pooja Guhan, Tsung-Wei Huang, Guan-Ming Su, Subhadra Gopalakrishnan, Dinesh Manocha,
- Abstract要約: V-Trans-4Styleは、ドキュメンタリー、ドラマ、フィーチャー映画、特定のYouTubeチャンネルのビデオ制作技術など、さまざまなプロダクションスタイルにビデオを適用するように設計されている。
我々のアルゴリズムは、よりボトムアップなアプローチを用いて、この柔軟性を達成するために最適な視覚遷移を推奨する。
- 参考スコア(独自算出の注目度): 46.774721054615746
- License:
- Abstract: We introduce V-Trans4Style, an innovative algorithm tailored for dynamic video content editing needs. It is designed to adapt videos to different production styles like documentaries, dramas, feature films, or a specific YouTube channel's video-making technique. Our algorithm recommends optimal visual transitions to help achieve this flexibility using a more bottom-up approach. We first employ a transformer-based encoder-decoder network to learn recommending temporally consistent and visually seamless sequences of visual transitions using only the input videos. We then introduce a style conditioning module that leverages this model to iteratively adjust the visual transitions obtained from the decoder through activation maximization. We demonstrate the efficacy of our method through experiments conducted on our newly introduced AutoTransition++ dataset. It is a 6k video version of AutoTransition Dataset that additionally categorizes its videos into different production style categories. Our encoder-decoder model outperforms the state-of-the-art transition recommendation method, achieving improvements of 10% to 80% in Recall@K and mean rank values over baseline. Our style conditioning module results in visual transitions that improve the capture of the desired video production style characteristics by an average of around 12% in comparison to other methods when measured with similarity metrics. We hope that our work serves as a foundation for exploring and understanding video production styles further.
- Abstract(参考訳): V-Trans4Styleは動的ビデオコンテンツ編集のための革新的なアルゴリズムである。
ドキュメンタリー、ドラマ、フィーチャー映画、あるいは特定のYouTubeチャンネルのビデオ制作技術など、さまざまなプロダクションスタイルにビデオを適用するように設計されている。
我々のアルゴリズムは、よりボトムアップなアプローチを用いて、この柔軟性を達成するために最適な視覚遷移を推奨する。
まず、入力ビデオのみを用いて、時間的に一貫性があり、視覚的にシームレスな視覚遷移のシーケンスを推奨するトランスフォーマーベースのエンコーダデコーダネットワークを用いて学習する。
次に、このモデルを利用して、アクティベーション最大化によりデコーダから得られる視覚遷移を反復的に調整するスタイルコンディショニングモジュールを導入する。
新たに導入したAutoTransition++データセットを用いて実験を行い,本手法の有効性を示す。
これはAutoTransition Datasetの6kビデオバージョンで、動画を異なるプロダクションスタイルのカテゴリに分類する。
エンコーダ・デコーダモデルでは,Recall@Kの10%から80%の改善と,ベースライン上のランク値の平均化を実現し,最先端のトランジションレコメンデーション手法よりも優れていた。
我々のスタイルコンディショニングモジュールは、類似度測定で測定した他の方法と比較して平均12%ほど、所望の映像制作スタイル特性のキャプチャを改善する視覚遷移をもたらす。
われわれの作品が、ビデオ制作のスタイルをさらに探求し理解するための基盤となることを願っている。
関連論文リスト
- Whats in a Video: Factorized Autoregressive Decoding for Online Dense Video Captioning [71.94122309290537]
ビデオの高密度キャプションを生成するための,効率的なオンライン手法を提案する。
我々のモデルは、新しい自己回帰因子化復号化アーキテクチャを使用している。
提案手法は,オフライン手法とオンライン手法の両方と比較して優れた性能を示し,計算コストを20%削減する。
論文 参考訳(メタデータ) (2024-11-22T02:46:44Z) - HAVANA: Hierarchical stochastic neighbor embedding for Accelerated Video ANnotAtions [59.71751978599567]
本稿では,時間的ビデオアノテーションプロセスの高速化のために,事前抽出した特徴量と次元減少量を用いた新しいアノテーションパイプラインを提案する。
従来のリニア手法と比較して,アノテーションの取り組みが大幅に改善され,12時間以上のビデオのアノテートに要するクリック数が10倍以上に短縮された。
論文 参考訳(メタデータ) (2024-09-16T18:15:38Z) - TVG: A Training-free Transition Video Generation Method with Diffusion Models [12.037716102326993]
遷移ビデオはメディア制作において重要な役割を担い、視覚的物語の流れとコヒーレンスを高める。
拡散モデルに基づくビデオ生成の最近の進歩は、トランジションを作成する新しい可能性を提供するが、フレーム間の関係モデリングの貧弱や突然のコンテンツ変更といった課題に直面している。
本稿では,これらの制約に対処するビデオレベルの拡散モデルを用いて,新たなトレーニング不要な遷移ビデオ生成(TVG)手法を提案する。
論文 参考訳(メタデータ) (2024-08-24T00:33:14Z) - WildVidFit: Video Virtual Try-On in the Wild via Image-Based Controlled Diffusion Models [132.77237314239025]
ビデオ仮想トライオンは、衣料品のアイデンティティを維持し、ソースビデオにおける人のポーズと身体の形に適応する現実的なシーケンスを生成することを目的としている。
従来の画像ベースの手法は、ワープとブレンディングに依存しており、複雑な人間の動きや閉塞に苦しむ。
衣料品の説明や人間の動きを条件とした映像生成のプロセスとして,映像試行を再認識する。
私たちのソリューションであるWildVidFitは、画像ベースで制御された拡散モデルを用いて、一段階の合理化を図っている。
論文 参考訳(メタデータ) (2024-07-15T11:21:03Z) - InternVideo2: Scaling Foundation Models for Multimodal Video Understanding [51.129913789991924]
InternVideo2は、ビデオファウンデーションモデル(FM)の新たなファミリーで、ビデオ認識、ビデオ音声タスク、ビデオ中心タスクの最先端の結果を達成する。
私たちのコアデザインは、マスク付きビデオモデリング、クロスコントラスト学習、予測トークンを統合し、最大6Bビデオサイズまでスケールアップするプログレッシブトレーニングアプローチです。
論文 参考訳(メタデータ) (2024-03-22T17:57:42Z) - Style-A-Video: Agile Diffusion for Arbitrary Text-based Video Style
Transfer [13.098901971644656]
本稿では,Style-A-Video というゼロショットビデオスタイリング手法を提案する。
画像遅延拡散モデルを用いた生成事前学習型トランスフォーマーを用いて、簡潔なテキスト制御ビデオスタイリングを実現する。
テストの結果,従来のソリューションよりも少ない使用量で,優れたコンテンツ保存とスタイリスティックな性能が得られることがわかった。
論文 参考訳(メタデータ) (2023-05-09T14:03:27Z) - Tubelet-Contrastive Self-Supervision for Video-Efficient Generalization [23.245275661852446]
動きに着目した映像表現を学習するための自己教師付き手法を提案する。
我々は、同じローカルモーションダイナミクスを持つビデオ間の類似性を学ぶが、それ以外は異なる外観を持つ。
トレーニング済みビデオの25%しか使用していない場合,本手法では性能が維持される。
論文 参考訳(メタデータ) (2023-03-20T10:31:35Z) - AutoTransition: Learning to Recommend Video Transition Effects [20.384463765702417]
自動ビデオ遷移レコメンデーション(VTR)の実施について紹介する。
VTRには生のビデオ撮影とオーディオが連続して提供され、隣接する2つのショットごとにビデオ遷移を推奨する。
本稿では,2つの部分からなる新しいマルチモーダルマッチングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-27T12:00:42Z) - Encode-in-Style: Latent-based Video Encoding using StyleGAN2 [0.7614628596146599]
本稿では,データ効率のよい高品質な映像再生を実現するために,エンドツーエンドの顔画像符号化手法を提案する。
このアプローチは、StyleGAN2イメージインバージョンとマルチステージの非線形遅延空間編集に基づいて、入力ビデオにほぼ匹敵するビデオを生成する。
論文 参考訳(メタデータ) (2022-03-28T05:44:19Z) - Deep Video Prior for Video Consistency and Propagation [58.250209011891904]
視覚的ビデオの時間的整合性に対する新規で一般的なアプローチを提案する。
提案手法は,大規模なデータセットではなく,オリジナルビデオとプロセッシングビデオのペアでのみ訓練される。
我々は、Deep Video Priorでビデオ上で畳み込みニューラルネットワークをトレーニングすることで、時間的一貫性を実現することができることを示す。
論文 参考訳(メタデータ) (2022-01-27T16:38:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。