A Multi-Modal AI Copilot for Single-Cell Analysis with Instruction Following
- URL: http://arxiv.org/abs/2501.08187v2
- Date: Wed, 15 Jan 2025 02:59:32 GMT
- Title: A Multi-Modal AI Copilot for Single-Cell Analysis with Instruction Following
- Authors: Yin Fang, Xinle Deng, Kangwei Liu, Ningyu Zhang, Jingyang Qian, Penghui Yang, Xiaohui Fan, Huajun Chen,
- Abstract summary: Large language models excel at interpreting complex natural language instructions, enabling them to perform a wide range of tasks.
We present InstructCell, a multi-modal AI copilot that leverages natural language as a medium for more direct and flexible single-cell analysis.
InstructCell empowers researchers to accomplish critical tasks-such as cell type annotation, conditional pseudo-cell generation, and drug sensitivity prediction-using straightforward natural language commands.
- Score: 32.67347401145835
- License:
- Abstract: Large language models excel at interpreting complex natural language instructions, enabling them to perform a wide range of tasks. In the life sciences, single-cell RNA sequencing (scRNA-seq) data serves as the "language of cellular biology", capturing intricate gene expression patterns at the single-cell level. However, interacting with this "language" through conventional tools is often inefficient and unintuitive, posing challenges for researchers. To address these limitations, we present InstructCell, a multi-modal AI copilot that leverages natural language as a medium for more direct and flexible single-cell analysis. We construct a comprehensive multi-modal instruction dataset that pairs text-based instructions with scRNA-seq profiles from diverse tissues and species. Building on this, we develop a multi-modal cell language architecture capable of simultaneously interpreting and processing both modalities. InstructCell empowers researchers to accomplish critical tasks-such as cell type annotation, conditional pseudo-cell generation, and drug sensitivity prediction-using straightforward natural language commands. Extensive evaluations demonstrate that InstructCell consistently meets or exceeds the performance of existing single-cell foundation models, while adapting to diverse experimental conditions. More importantly, InstructCell provides an accessible and intuitive tool for exploring complex single-cell data, lowering technical barriers and enabling deeper biological insights.
Related papers
- Biology Instructions: A Dataset and Benchmark for Multi-Omics Sequence Understanding Capability of Large Language Models [51.316001071698224]
We introduce Biology-Instructions, the first large-scale multi-omics biological sequences-related instruction-tuning dataset.
This dataset can bridge the gap between large language models (LLMs) and complex biological sequences-related tasks.
We also develop a strong baseline called ChatMultiOmics with a novel three-stage training pipeline.
arXiv Detail & Related papers (2024-12-26T12:12:23Z) - scReader: Prompting Large Language Models to Interpret scRNA-seq Data [12.767105992391555]
We propose an innovative hybrid approach that integrates the general knowledge capabilities of large language models with domain-specific representation models for single-cell omics data interpretation.
By inputting single-cell gene-level expression data with prompts, we effectively model cellular representations based on the differential expression levels of genes across various species and cell types.
arXiv Detail & Related papers (2024-12-24T04:28:42Z) - COMET: Benchmark for Comprehensive Biological Multi-omics Evaluation Tasks and Language Models [56.81513758682858]
COMET aims to evaluate models across single-omics, cross-omics, and multi-omics tasks.
First, we curate and develop a diverse collection of downstream tasks and datasets covering key structural and functional aspects in DNA, RNA, and proteins.
Then, we evaluate existing foundational language models for DNA, RNA, and proteins, as well as the newly proposed multi-omics method.
arXiv Detail & Related papers (2024-12-13T18:42:00Z) - Single-Cell Omics Arena: A Benchmark Study for Large Language Models on Cell Type Annotation Using Single-Cell Data [13.56585855722118]
Large language models (LLMs) have demonstrated their ability to efficiently process and synthesize vast corpora of text to automatically extract biological knowledge.
Our study explores the potential of LLMs to accurately classify and annotate cell types in single-cell RNA sequencing (scRNA-seq) data.
The results demonstrate that LLMs can provide robust interpretations of single-cell data without requiring additional fine-tuning.
arXiv Detail & Related papers (2024-12-03T23:58:35Z) - LangCell: Language-Cell Pre-training for Cell Identity Understanding [3.6518971609937068]
We introduce LangCell, a unified representation of single-cell data and natural language during the pre-training phase.
Results show that LangCell is the only single-cell PLM that can work effectively in zero-shot cell identity understanding scenarios.
arXiv Detail & Related papers (2024-05-09T10:04:05Z) - scInterpreter: Training Large Language Models to Interpret scRNA-seq
Data for Cell Type Annotation [15.718901418627366]
This research focuses on how to train and adapt the Large Language Model with the capability to interpret and distinguish cell types in single-cell RNA sequencing data.
arXiv Detail & Related papers (2024-02-18T05:39:00Z) - ChatCell: Facilitating Single-Cell Analysis with Natural Language [40.4429032376233]
ChatCell is a tool for facilitating single-cell analysis with natural language.
ChatCell has acquired profound expertise in single-cell biology.
Our project homepage is available at https://zjunlp.io/project/ChatCell.
arXiv Detail & Related papers (2024-02-13T09:06:14Z) - Efficient and Scalable Fine-Tune of Language Models for Genome
Understanding [49.606093223945734]
We present textscLingo: textscLanguage prefix ftextscIne-tuning for textscGentextscOmes.
Unlike DNA foundation models, textscLingo strategically leverages natural language foundation models' contextual cues.
textscLingo further accommodates numerous downstream fine-tune tasks by an adaptive rank sampling method.
arXiv Detail & Related papers (2024-02-12T21:40:45Z) - Multi-modal Self-supervised Pre-training for Regulatory Genome Across
Cell Types [75.65676405302105]
We propose a simple yet effective approach for pre-training genome data in a multi-modal and self-supervised manner, which we call GeneBERT.
We pre-train our model on the ATAC-seq dataset with 17 million genome sequences.
arXiv Detail & Related papers (2021-10-11T12:48:44Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
We propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation.
Unlike most existing sentence-level augmentation strategies, our method is more general and could be easily adapted to any MLE-based training procedure.
arXiv Detail & Related papers (2021-01-02T01:15:57Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.