A Critical Synthesis of Uncertainty Quantification and Foundation Models in Monocular Depth Estimation
- URL: http://arxiv.org/abs/2501.08188v1
- Date: Tue, 14 Jan 2025 15:13:00 GMT
- Title: A Critical Synthesis of Uncertainty Quantification and Foundation Models in Monocular Depth Estimation
- Authors: Steven Landgraf, Rongjun Qin, Markus Ulrich,
- Abstract summary: Metric depth estimation, which involves predicting absolute distances, poses particular challenges.
We fuse five different uncertainty quantification methods with the current state-of-the-art DepthAnythingV2 foundation model.
Our findings identify fine-tuning with the Gaussian Negative Log-Likelihood Loss (GNLL) as a particularly promising approach.
- Score: 13.062551984263031
- License:
- Abstract: While recent foundation models have enabled significant breakthroughs in monocular depth estimation, a clear path towards safe and reliable deployment in the real-world remains elusive. Metric depth estimation, which involves predicting absolute distances, poses particular challenges, as even the most advanced foundation models remain prone to critical errors. Since quantifying the uncertainty has emerged as a promising endeavor to address these limitations and enable trustworthy deployment, we fuse five different uncertainty quantification methods with the current state-of-the-art DepthAnythingV2 foundation model. To cover a wide range of metric depth domains, we evaluate their performance on four diverse datasets. Our findings identify fine-tuning with the Gaussian Negative Log-Likelihood Loss (GNLL) as a particularly promising approach, offering reliable uncertainty estimates while maintaining predictive performance and computational efficiency on par with the baseline, encompassing both training and inference time. By fusing uncertainty quantification and foundation models within the context of monocular depth estimation, this paper lays a critical foundation for future research aimed at improving not only model performance but also its explainability. Extending this critical synthesis of uncertainty quantification and foundation models into other crucial tasks, such as semantic segmentation and pose estimation, presents exciting opportunities for safer and more reliable machine vision systems.
Related papers
- A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation [0.0]
Advancements in image segmentation play an integral role within the broad scope of Deep Learning-based Computer Vision.
Uncertainty quantification has been extensively studied within this context, enabling the expression of model ignorance (epistemic uncertainty) or data ambiguity (aleatoric uncertainty) to prevent uninformed decision-making.
arXiv Detail & Related papers (2024-11-25T13:26:09Z) - Rethinking the Uncertainty: A Critical Review and Analysis in the Era of Large Language Models [42.563558441750224]
Large Language Models (LLMs) have become fundamental to a broad spectrum of artificial intelligence applications.
Current methods often struggle to accurately identify, measure, and address the true uncertainty.
This paper introduces a comprehensive framework specifically designed to identify and understand the types and sources of uncertainty.
arXiv Detail & Related papers (2024-10-26T15:07:15Z) - Uncertainty Quantification for Forward and Inverse Problems of PDEs via
Latent Global Evolution [110.99891169486366]
We propose a method that integrates efficient and precise uncertainty quantification into a deep learning-based surrogate model.
Our method endows deep learning-based surrogate models with robust and efficient uncertainty quantification capabilities for both forward and inverse problems.
Our method excels at propagating uncertainty over extended auto-regressive rollouts, making it suitable for scenarios involving long-term predictions.
arXiv Detail & Related papers (2024-02-13T11:22:59Z) - MonoProb: Self-Supervised Monocular Depth Estimation with Interpretable
Uncertainty [4.260312058817663]
Self-supervised monocular depth estimation methods aim to be used in critical applications such as autonomous vehicles for environment analysis.
We propose MonoProb, a new unsupervised monocular depth estimation method that returns an interpretable uncertainty.
Our experiments highlight enhancements achieved by our method on standard depth and uncertainty metrics.
arXiv Detail & Related papers (2023-11-10T15:55:14Z) - The RoboDepth Challenge: Methods and Advancements Towards Robust Depth Estimation [97.63185634482552]
We summarize the winning solutions from the RoboDepth Challenge.
The challenge was designed to facilitate and advance robust OoD depth estimation.
We hope this challenge could lay a solid foundation for future research on robust and reliable depth estimation.
arXiv Detail & Related papers (2023-07-27T17:59:56Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
The intrinsic ill-posedness and ordinal-sensitive nature of monocular depth estimation (MDE) models pose major challenges to the estimation of uncertainty degree.
We propose to model the uncertainty of MDE models from the perspective of the inherent probability distributions.
By simply introducing additional training regularization terms, our model, with surprisingly simple formations and without requiring extra modules or multiple inferences, can provide uncertainty estimations with state-of-the-art reliability.
arXiv Detail & Related papers (2023-07-19T12:11:15Z) - Toward Reliable Human Pose Forecasting with Uncertainty [51.628234388046195]
We develop an open-source library for human pose forecasting, including multiple models, supporting several datasets.
We devise two types of uncertainty in the problem to increase performance and convey better trust.
arXiv Detail & Related papers (2023-04-13T17:56:08Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
A new approach with uncertainty-aware regression-based neural networks (NNs) shows promise over traditional deterministic methods and typical Bayesian NNs.
We detail the theoretical shortcomings and analyze the performance on synthetic and real-world data sets, showing that Deep Evidential Regression is a quantification rather than an exact uncertainty.
arXiv Detail & Related papers (2022-05-20T10:10:32Z) - Uncertainty Estimation with Deep Learning for Rainfall-Runoff Modelling [4.080450230687111]
Uncertainty estimations are critical for actionable hydrological forecasting.
We show that accurate, precise, and reliable uncertainty estimation can be achieved with Deep Learning.
arXiv Detail & Related papers (2020-12-15T20:52:19Z) - On the uncertainty of self-supervised monocular depth estimation [52.13311094743952]
Self-supervised paradigms for monocular depth estimation are very appealing since they do not require ground truth annotations at all.
We explore for the first time how to estimate the uncertainty for this task and how this affects depth accuracy.
We propose a novel peculiar technique specifically designed for self-supervised approaches.
arXiv Detail & Related papers (2020-05-13T09:00:55Z) - Model Uncertainty Quantification for Reliable Deep Vision Structural
Health Monitoring [2.5126058470073263]
This paper proposes Bayesian inference for deep vision structural health monitoring models.
Uncertainty can be quantified using the Monte Carlo dropout sampling.
Three independent case studies for cracks, local damage identification, and bridge component detection are investigated.
arXiv Detail & Related papers (2020-04-10T17:54:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.