Rethinking the Uncertainty: A Critical Review and Analysis in the Era of Large Language Models
- URL: http://arxiv.org/abs/2410.20199v1
- Date: Sat, 26 Oct 2024 15:07:15 GMT
- Title: Rethinking the Uncertainty: A Critical Review and Analysis in the Era of Large Language Models
- Authors: Mohammad Beigi, Sijia Wang, Ying Shen, Zihao Lin, Adithya Kulkarni, Jianfeng He, Feng Chen, Ming Jin, Jin-Hee Cho, Dawei Zhou, Chang-Tien Lu, Lifu Huang,
- Abstract summary: Large Language Models (LLMs) have become fundamental to a broad spectrum of artificial intelligence applications.
Current methods often struggle to accurately identify, measure, and address the true uncertainty.
This paper introduces a comprehensive framework specifically designed to identify and understand the types and sources of uncertainty.
- Score: 42.563558441750224
- License:
- Abstract: In recent years, Large Language Models (LLMs) have become fundamental to a broad spectrum of artificial intelligence applications. As the use of LLMs expands, precisely estimating the uncertainty in their predictions has become crucial. Current methods often struggle to accurately identify, measure, and address the true uncertainty, with many focusing primarily on estimating model confidence. This discrepancy is largely due to an incomplete understanding of where, when, and how uncertainties are injected into models. This paper introduces a comprehensive framework specifically designed to identify and understand the types and sources of uncertainty, aligned with the unique characteristics of LLMs. Our framework enhances the understanding of the diverse landscape of uncertainties by systematically categorizing and defining each type, establishing a solid foundation for developing targeted methods that can precisely quantify these uncertainties. We also provide a detailed introduction to key related concepts and examine the limitations of current methods in mission-critical and safety-sensitive applications. The paper concludes with a perspective on future directions aimed at enhancing the reliability and practical adoption of these methods in real-world scenarios.
Related papers
- A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation [0.0]
Advancements in image segmentation play an integral role within the greater scope of Deep Learning-based computer vision.
Uncertainty quantification has been extensively studied within this context, enabling expression of model ignorance (epistemic uncertainty) or data ambiguity (aleatoric uncertainty) to prevent uninformed decision making.
This work provides a comprehensive overview of probabilistic segmentation by discussing fundamental concepts in uncertainty that govern advancements in the field and the application to various tasks.
arXiv Detail & Related papers (2024-11-25T13:26:09Z) - Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
We present a comprehensive framework to disentangle, quantify, and mitigate uncertainty in perception and plan generation.
We propose methods tailored to the unique properties of perception and decision-making.
We show that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.
arXiv Detail & Related papers (2024-11-03T17:32:00Z) - A Survey of Uncertainty Estimation in LLMs: Theory Meets Practice [7.687545159131024]
We clarify the definitions of uncertainty and confidence, highlighting their distinctions and implications for model predictions.
We categorize various classes of uncertainty estimation methods derived from approaches.
We also explore techniques for uncertainty into diverse applications, including out-of-distribution detection, data annotation, and question clarification.
arXiv Detail & Related papers (2024-10-20T07:55:44Z) - A Comprehensive Survey on Evidential Deep Learning and Its Applications [64.83473301188138]
Evidential Deep Learning (EDL) provides reliable uncertainty estimation with minimal additional computation in a single forward pass.
We first delve into the theoretical foundation of EDL, the subjective logic theory, and discuss its distinctions from other uncertainty estimation frameworks.
We elaborate on its extensive applications across various machine learning paradigms and downstream tasks.
arXiv Detail & Related papers (2024-09-07T05:55:06Z) - Navigating Uncertainties in Machine Learning for Structural Dynamics: A Comprehensive Review of Probabilistic and Non-Probabilistic Approaches in Forward and Inverse Problems [0.0]
This paper presents a comprehensive review on navigating uncertainties in machine learning (ML)
It lists uncertainty-aware approaches into probabilistic methods and non-probabilistic methods.
The review aims to assist researchers and practitioners in making informed decisions when utilizing ML techniques to address uncertainties in structural dynamic problems.
arXiv Detail & Related papers (2024-08-16T09:43:01Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - A Structured Review of Literature on Uncertainty in Machine Learning & Deep Learning [0.8667724053232616]
We focus on a critical concern for adaptation of Machine Learning in risk-sensitive applications, namely understanding and quantifying uncertainty.
Our paper approaches this topic in a structured way, providing a review of the literature in the various facets that uncertainty is enveloped in the ML process.
Key contributions in this review are broadening the scope of uncertainty discussion, as well as an updated review of uncertainty quantification methods in Deep Learning.
arXiv Detail & Related papers (2024-06-01T07:17:38Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - A Theoretical and Practical Framework for Evaluating Uncertainty Calibration in Object Detection [1.8843687952462744]
This work presents a novel theoretical and practical framework to evaluate object detection systems in the context of uncertainty calibration.
The robustness of the proposed uncertainty calibration metrics is shown through a series of representative experiments.
arXiv Detail & Related papers (2023-09-01T14:02:44Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
We argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions.
We describe how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems.
This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness.
arXiv Detail & Related papers (2020-11-15T17:26:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.