Data-driven system identification using quadratic embeddings of nonlinear dynamics
- URL: http://arxiv.org/abs/2501.08202v1
- Date: Tue, 14 Jan 2025 15:37:03 GMT
- Title: Data-driven system identification using quadratic embeddings of nonlinear dynamics
- Authors: Stefan Klus, Joel-Pascal N'Konzi,
- Abstract summary: We propose a novel data-driven method called QENDy (Quadratic Embedding of Dynamics)
The approach is based on an embedding of the system into a higher-dimensional feature space in which the dynamics become quadratic.
We illustrate the efficacy and accuracy of QENDy with the aid of various benchmark problems and compare its performance with SINDy and a deep learning method for identifying quadratic embeddings.
- Score: 0.9714447724811842
- License:
- Abstract: We propose a novel data-driven method called QENDy (Quadratic Embedding of Nonlinear Dynamics) that not only allows us to learn quadratic representations of highly nonlinear dynamical systems, but also to identify the governing equations. The approach is based on an embedding of the system into a higher-dimensional feature space in which the dynamics become quadratic. Just like SINDy (Sparse Identification of Nonlinear Dynamics), our method requires trajectory data, time derivatives for the training data points, which can also be estimated using finite difference approximations, and a set of preselected basis functions, called dictionary. We illustrate the efficacy and accuracy of QENDy with the aid of various benchmark problems and compare its performance with SINDy and a deep learning method for identifying quadratic embeddings. Furthermore, we analyze the convergence of QENDy and SINDy in the infinite data limit, highlight their similarities and main differences, and compare the quadratic embedding with linearization techniques based on the Koopman operator.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems [3.1484174280822845]
We focus on finding parsimonious ordinary differential equation (ODE) models for nonlinear, noisy, and non-autonomous dynamical systems.
Our method, dynamic SINDy, combines variational inference with SINDy (sparse identification of nonlinear dynamics) to model time-varying coefficients of sparse ODEs.
arXiv Detail & Related papers (2024-10-02T23:00:00Z) - Generalized Quadratic Embeddings for Nonlinear Dynamics using Deep
Learning [11.339982217541822]
We present a data-driven methodology for modeling the dynamics of nonlinear systems.
In this work, we propose using quadratic systems as the common structure, inspired by the lifting principle.
arXiv Detail & Related papers (2022-11-01T10:03:34Z) - Bayesian Spline Learning for Equation Discovery of Nonlinear Dynamics
with Quantified Uncertainty [8.815974147041048]
We develop a novel framework to identify parsimonious governing equations of nonlinear (spatiotemporal) dynamics from sparse, noisy data with quantified uncertainty.
The proposed algorithm is evaluated on multiple nonlinear dynamical systems governed by canonical ordinary and partial differential equations.
arXiv Detail & Related papers (2022-10-14T20:37:36Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Physics-informed Spline Learning for Nonlinear Dynamics Discovery [8.546520029145853]
We propose a Physics-informed Spline Learning framework to discover parsimonious governing equations for nonlinear dynamics.
The framework is based on sparsely sampled noisy data.
The efficacy and superiority of the proposed method has been demonstrated by multiple well-known nonlinear dynamical systems.
arXiv Detail & Related papers (2021-05-05T23:32:43Z) - Linear embedding of nonlinear dynamical systems and prospects for
efficient quantum algorithms [74.17312533172291]
We describe a method for mapping any finite nonlinear dynamical system to an infinite linear dynamical system (embedding)
We then explore an approach for approximating the resulting infinite linear system with finite linear systems (truncation)
arXiv Detail & Related papers (2020-12-12T00:01:10Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
We study a class of nonlinear dynamical systems whose state transitions depend linearly on a known feature embedding of state-action pairs.
We propose an active learning approach that achieves this by repeating three steps: trajectory planning, trajectory tracking, and re-estimation of the system from all available data.
We show that our method estimates nonlinear dynamical systems at a parametric rate, similar to the statistical rate of standard linear regression.
arXiv Detail & Related papers (2020-06-18T04:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.