Physics-informed Spline Learning for Nonlinear Dynamics Discovery
- URL: http://arxiv.org/abs/2105.02368v1
- Date: Wed, 5 May 2021 23:32:43 GMT
- Title: Physics-informed Spline Learning for Nonlinear Dynamics Discovery
- Authors: Fangzheng Sun, Yang Liu, Hao Sun
- Abstract summary: We propose a Physics-informed Spline Learning framework to discover parsimonious governing equations for nonlinear dynamics.
The framework is based on sparsely sampled noisy data.
The efficacy and superiority of the proposed method has been demonstrated by multiple well-known nonlinear dynamical systems.
- Score: 8.546520029145853
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamical systems are typically governed by a set of linear/nonlinear
differential equations. Distilling the analytical form of these equations from
very limited data remains intractable in many disciplines such as physics,
biology, climate science, engineering and social science. To address this
fundamental challenge, we propose a novel Physics-informed Spline Learning
(PiSL) framework to discover parsimonious governing equations for nonlinear
dynamics, based on sparsely sampled noisy data. The key concept is to (1)
leverage splines to interpolate locally the dynamics, perform analytical
differentiation and build the library of candidate terms, (2) employ sparse
representation of the governing equations, and (3) use the physics residual in
turn to inform the spline learning. The synergy between splines and discovered
underlying physics leads to the robust capacity of dealing with high-level data
scarcity and noise. A hybrid sparsity-promoting alternating direction
optimization strategy is developed for systematically pruning the sparse
coefficients that form the structure and explicit expression of the governing
equations. The efficacy and superiority of the proposed method has been
demonstrated by multiple well-known nonlinear dynamical systems, in comparison
with a state-of-the-art method.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Discovering Governing equations from Graph-Structured Data by Sparse Identification of Nonlinear Dynamical Systems [0.27624021966289597]
We develop a new method called Sparse Identification of Dynamical Systems from Graph-structured data (SINDyG)
SINDyG incorporates the network structure into sparse regression to identify model parameters that explain the underlying network dynamics.
arXiv Detail & Related papers (2024-09-02T17:51:37Z) - Data-Driven Computing Methods for Nonlinear Physics Systems with Geometric Constraints [0.7252027234425334]
This paper introduces a novel, data-driven framework that synergizes physics-based priors with advanced machine learning techniques.
Our framework showcases four algorithms, each embedding a specific physics-based prior tailored to a particular class of nonlinear systems.
The integration of these priors also enhances the expressive power of neural networks, enabling them to capture complex patterns typical in physical phenomena.
arXiv Detail & Related papers (2024-06-20T23:10:41Z) - Generalized Quadratic Embeddings for Nonlinear Dynamics using Deep
Learning [11.339982217541822]
We present a data-driven methodology for modeling the dynamics of nonlinear systems.
In this work, we propose using quadratic systems as the common structure, inspired by the lifting principle.
arXiv Detail & Related papers (2022-11-01T10:03:34Z) - Bayesian Spline Learning for Equation Discovery of Nonlinear Dynamics
with Quantified Uncertainty [8.815974147041048]
We develop a novel framework to identify parsimonious governing equations of nonlinear (spatiotemporal) dynamics from sparse, noisy data with quantified uncertainty.
The proposed algorithm is evaluated on multiple nonlinear dynamical systems governed by canonical ordinary and partial differential equations.
arXiv Detail & Related papers (2022-10-14T20:37:36Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization [77.34726150561087]
We introduce Discovery of Dynamical Systems via Moving Horizon Optimization (DySMHO), a scalable machine learning framework.
DySMHO sequentially learns the underlying governing equations from a large dictionary of basis functions.
Canonical nonlinear dynamical system examples are used to demonstrate that DySMHO can accurately recover the governing laws.
arXiv Detail & Related papers (2021-07-30T20:35:03Z) - Linear embedding of nonlinear dynamical systems and prospects for
efficient quantum algorithms [74.17312533172291]
We describe a method for mapping any finite nonlinear dynamical system to an infinite linear dynamical system (embedding)
We then explore an approach for approximating the resulting infinite linear system with finite linear systems (truncation)
arXiv Detail & Related papers (2020-12-12T00:01:10Z) - Physics-informed learning of governing equations from scarce data [14.95055620484844]
This work introduces a physics-informed deep learning framework to discover governing partial differential equations (PDEs) from scarce and noisy representation data.
The efficacy and robustness of this method are demonstrated, both numerically and experimentally, on discovering a variety of PDE systems.
The resulting computational framework shows the potential for closed-form model discovery in practical applications.
arXiv Detail & Related papers (2020-05-05T22:13:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.