Cognitive Assessment and Training in Extended Reality: Multimodal Systems, Clinical Utility, and Current Challenges
- URL: http://arxiv.org/abs/2501.08237v1
- Date: Tue, 14 Jan 2025 16:22:36 GMT
- Title: Cognitive Assessment and Training in Extended Reality: Multimodal Systems, Clinical Utility, and Current Challenges
- Authors: Palmira Victoria González-Erena, Sara Fernández-Guinea, Panagiotis Kourtesis,
- Abstract summary: Extended reality (XR) technologies are transforming cognitive assessment and training by offering immersive, interactive environments that simulate real-world tasks.
XR enhances ecological validity while enabling real-time, multimodal data collection through tools such as galvanic skin response (GSR), electroencephalography (EEG), eye tracking (ET), hand tracking, and body tracking.
- Score: 0.9831489366502301
- License:
- Abstract: Extended reality (XR) technologies-encompassing virtual reality (VR), augmented reality (AR), and mixed reality (MR) are transforming cognitive assessment and training by offering immersive, interactive environments that simulate real-world tasks. XR enhances ecological validity while enabling real-time, multimodal data collection through tools such as galvanic skin response (GSR), electroencephalography (EEG), eye tracking (ET), hand tracking, and body tracking. This allows for a more comprehensive understanding of cognitive and emotional processes, as well as adaptive, personalized interventions for users. Despite these advancements, current XR applications often underutilize the full potential of multimodal integration, relying primarily on visual and auditory inputs. Challenges such as cybersickness, usability concerns, and accessibility barriers further limit the widespread adoption of XR tools in cognitive science and clinical practice. This review examines XR-based cognitive assessment and training, focusing on its advantages over traditional methods, including ecological validity, engagement, and adaptability. It also explores unresolved challenges such as system usability, cost, and the need for multimodal feedback integration. The review concludes by identifying opportunities for optimizing XR tools to improve cognitive evaluation and rehabilitation outcomes, particularly for diverse populations, including older adults and individuals with cognitive impairments.
Related papers
- Integrating Reinforcement Learning and AI Agents for Adaptive Robotic Interaction and Assistance in Dementia Care [5.749791442522375]
This study explores a novel approach to advancing dementia care by integrating socially assistive robotics, reinforcement learning (RL), large language models (LLMs), and clinical domain expertise within a simulated environment.
arXiv Detail & Related papers (2025-01-28T06:38:24Z) - Complex Emotion Recognition System using basic emotions via Facial Expression, EEG, and ECG Signals: a review [1.8310098790941458]
The Complex Emotion Recognition System (CERS) deciphers complex emotional states by examining combinations of basic emotions expressed, their interconnections, and the dynamic variations.
The development of AI systems for discerning complex emotions poses a substantial challenge with significant implications for affective computing.
incorporating physiological signals such as Electrocardiogram (ECG) and Electroencephalogram (EEG) can notably enhance CERS.
arXiv Detail & Related papers (2024-09-09T05:06:10Z) - DeepFace-Attention: Multimodal Face Biometrics for Attention Estimation with Application to e-Learning [18.36413246876648]
This work introduces an innovative method for estimating attention levels (cognitive load) using an ensemble of facial analysis techniques applied to webcam videos.
Our approach adapts state-of-the-art facial analysis technologies to quantify the users' cognitive load in the form of high or low attention.
Our method outperforms existing state-of-the-art accuracies using the public mEBAL2 benchmark.
arXiv Detail & Related papers (2024-08-10T11:39:11Z) - Exploring Physiological Responses in Virtual Reality-based Interventions for Autism Spectrum Disorder: A Data-Driven Investigation [0.24876373046660102]
This study employs a multiplayer serious gaming environment within VR, engaging 34 individuals diagnosed with ASD.
We employed high-precision biosensors for a comprehensive view of the participants' arousal and responses during the VR sessions.
The study demonstrated the feasibility of using real-time data to adapt virtual scenarios, suggesting a promising avenue to support personalized therapy.
arXiv Detail & Related papers (2024-04-10T16:50:07Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Towards Mitigating Hallucination in Large Language Models via
Self-Reflection [63.2543947174318]
Large language models (LLMs) have shown promise for generative and knowledge-intensive tasks including question-answering (QA) tasks.
This paper analyses the phenomenon of hallucination in medical generative QA systems using widely adopted LLMs and datasets.
arXiv Detail & Related papers (2023-10-10T03:05:44Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - AEGIS: A real-time multimodal augmented reality computer vision based
system to assist facial expression recognition for individuals with autism
spectrum disorder [93.0013343535411]
This paper presents the development of a multimodal augmented reality (AR) system which combines the use of computer vision and deep convolutional neural networks (CNN)
The proposed system, which we call AEGIS, is an assistive technology deployable on a variety of user devices including tablets, smartphones, video conference systems, or smartglasses.
We leverage both spatial and temporal information in order to provide an accurate expression prediction, which is then converted into its corresponding visualization and drawn on top of the original video frame.
arXiv Detail & Related papers (2020-10-22T17:20:38Z) - Facial Electromyography-based Adaptive Virtual Reality Gaming for
Cognitive Training [5.033176361795483]
Two frequently cited problems in cognitive training literature are a lack of user engagement with the training programme, and a failure of developed skills to generalise to daily life.
This paper introduces a new cognitive training (CT) paradigm designed to address these two limitations.
It incorporates facial electromyography (EMG) as a means of determining user affect while engaged in the CT task.
This information is then utilised to dynamically adjust the game's difficulty in real-time as users play, with the aim of leading them into a state of flow.
arXiv Detail & Related papers (2020-04-27T10:01:52Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
It is crucial that the machine should be able to recognize the emotional state of the user with high accuracy.
Deep neural networks have been used with great success in recognizing emotions.
We present a new model for continuous emotion recognition based on facial expression recognition.
arXiv Detail & Related papers (2020-01-31T17:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.