Integrating Reinforcement Learning and AI Agents for Adaptive Robotic Interaction and Assistance in Dementia Care
- URL: http://arxiv.org/abs/2501.17206v1
- Date: Tue, 28 Jan 2025 06:38:24 GMT
- Title: Integrating Reinforcement Learning and AI Agents for Adaptive Robotic Interaction and Assistance in Dementia Care
- Authors: Fengpei Yuan, Nehal Hasnaeen, Ran Zhang, Bryce Bible, Joseph Riley Taylor, Hairong Qi, Fenghui Yao, Xiaopeng Zhao,
- Abstract summary: This study explores a novel approach to advancing dementia care by integrating socially assistive robotics, reinforcement learning (RL), large language models (LLMs), and clinical domain expertise within a simulated environment.
- Score: 5.749791442522375
- License:
- Abstract: This study explores a novel approach to advancing dementia care by integrating socially assistive robotics, reinforcement learning (RL), large language models (LLMs), and clinical domain expertise within a simulated environment. This integration addresses the critical challenge of limited experimental data in socially assistive robotics for dementia care, providing a dynamic simulation environment that realistically models interactions between persons living with dementia (PLWDs) and robotic caregivers. The proposed framework introduces a probabilistic model to represent the cognitive and emotional states of PLWDs, combined with an LLM-based behavior simulation to emulate their responses. We further develop and train an adaptive RL system enabling humanoid robots, such as Pepper, to deliver context-aware and personalized interactions and assistance based on PLWDs' cognitive and emotional states. The framework also generalizes to computer-based agents, highlighting its versatility. Results demonstrate that the RL system, enhanced by LLMs, effectively interprets and responds to the complex needs of PLWDs, providing tailored caregiving strategies. This research contributes to human-computer and human-robot interaction by offering a customizable AI-driven caregiving platform, advancing understanding of dementia-related challenges, and fostering collaborative innovation in assistive technologies. The proposed approach has the potential to enhance the independence and quality of life for PLWDs while alleviating caregiver burden, underscoring the transformative role of interaction-focused AI systems in dementia care.
Related papers
- Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
We focus on predicting engagement in dyadic interactions by scrutinizing verbal and non-verbal cues, aiming to detect signs of disinterest or confusion.
In this work, we collect a dataset featuring 34 participants engaged in casual dyadic conversations, each providing self-reported engagement ratings at the end of each conversation.
We introduce a novel fusion strategy using Large Language Models (LLMs) to integrate multiple behavior modalities into a multimodal transcript''
arXiv Detail & Related papers (2024-09-13T18:28:12Z) - Quantum Computing and Neuromorphic Computing for Safe, Reliable, and explainable Multi-Agent Reinforcement Learning: Optimal Control in Autonomous Robotics [0.0]
This paper investigates the utilization of Quantum Computing and Neuromorphic Computing for Safe, Reliable, and Explainable Multi_Agent Reinforcement Learning (MARL)
The objective was to address the challenges of optimizing the behavior of autonomous agents while ensuring safety, reliability, and explainability.
arXiv Detail & Related papers (2024-07-29T15:43:30Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - Extended Reality for Enhanced Human-Robot Collaboration: a Human-in-the-Loop Approach [2.336967926255341]
Human-robot collaboration attempts to tackle these challenges by combining the strength and precision of machines with human ingenuity and perceptual understanding.
We propose an implementation framework for an autonomous, machine learning-based manipulator that incorporates human-in-the-loop principles.
The conceptual framework foresees human involvement directly in the robot learning process, resulting in higher adaptability and task generalization.
arXiv Detail & Related papers (2024-03-21T17:50:22Z) - Chain-of-Interaction: Enhancing Large Language Models for Psychiatric Behavior Understanding by Dyadic Contexts [4.403408362362806]
We introduce the Chain-of-Interaction prompting method to contextualize large language models for psychiatric decision support by the dyadic interactions.
This approach enables large language models to leverage the coding scheme, patient state, and domain knowledge for patient behavioral coding.
arXiv Detail & Related papers (2024-03-20T17:47:49Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
We introduce the problem of Large Language Models (LLMs)-based human-agent collaboration for complex task-solving.
We propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC.
This approach includes a policy model designed to determine the most opportune stages for human intervention within the task-solving process.
arXiv Detail & Related papers (2024-02-20T11:03:36Z) - Offline Risk-sensitive RL with Partial Observability to Enhance
Performance in Human-Robot Teaming [1.3980986259786223]
We propose a method to incorporate model uncertainty, thus enabling risk-sensitive sequential decision-making.
Experiments were conducted with a group of twenty-six human participants within a simulated robot teleoperation environment.
arXiv Detail & Related papers (2024-02-08T14:27:34Z) - On the Emergence of Symmetrical Reality [51.21203247240322]
We introduce the symmetrical reality framework, which offers a unified representation encompassing various forms of physical-virtual amalgamations.
We propose an instance of an AI-driven active assistance service that illustrates the potential applications of symmetrical reality.
arXiv Detail & Related papers (2024-01-26T16:09:39Z) - Neuroadaptation in Physical Human-Robot Collaboration [34.73541717674098]
We have demonstrated a novel closed-loop-neuroadaptive framework for pHRC.
We have applied cognitive conflict information in a closed-loop manner, with the help of reinforcement learning, to adapt to robot strategy.
The experiment results show that the closed-loop-based neuroadaptive framework successfully reduces the level of cognitive conflict.
arXiv Detail & Related papers (2023-09-30T12:16:24Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
In social robotics, endowing humanoid robots with the ability to generate bodily expressions of affect can improve human-robot interaction and collaboration.
We implement a deep learning data-driven framework that learns from a few hand-designed robotic bodily expressions.
The evaluation study found that the anthropomorphism and animacy of the generated expressions are not perceived differently from the hand-designed ones.
arXiv Detail & Related papers (2022-05-02T09:21:39Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.