Continual Deep Active Learning for Medical Imaging: Replay-Base Architecture for Context Adaptation
- URL: http://arxiv.org/abs/2501.08245v1
- Date: Tue, 14 Jan 2025 16:31:01 GMT
- Title: Continual Deep Active Learning for Medical Imaging: Replay-Base Architecture for Context Adaptation
- Authors: Rui Daniel, M. Rita Verdelho, Catarina Barata, Carlos Santiago,
- Abstract summary: Deep Learning for medical imaging faces challenges in adapting and generalizing to new contexts.
This work explores two approaches (CAL) to develop a novel framework for robust medical image analysis.
We show that RBACA outperforms a baseline framework without CAL, and a state-of-the-art CAL method across various memory sizes and annotation budgets.
- Score: 8.867734798489037
- License:
- Abstract: Deep Learning for medical imaging faces challenges in adapting and generalizing to new contexts. Additionally, it often lacks sufficient labeled data for specific tasks requiring significant annotation effort. Continual Learning (CL) tackles adaptability and generalizability by enabling lifelong learning from a data stream while mitigating forgetting of previously learned knowledge. Active Learning (AL) reduces the number of required annotations for effective training. This work explores both approaches (CAL) to develop a novel framework for robust medical image analysis. Based on the automatic recognition of shifts in image characteristics, Replay-Base Architecture for Context Adaptation (RBACA) employs a CL rehearsal method to continually learn from diverse contexts, and an AL component to select the most informative instances for annotation. A novel approach to evaluate CAL methods is established using a defined metric denominated IL-Score, which allows for the simultaneous assessment of transfer learning, forgetting, and final model performance. We show that RBACA works in domain and class-incremental learning scenarios, by assessing its IL-Score on the segmentation and diagnosis of cardiac images. The results show that RBACA outperforms a baseline framework without CAL, and a state-of-the-art CAL method across various memory sizes and annotation budgets. Our code is available in https://github.com/RuiDaniel/RBACA .
Related papers
- Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - TAAL: Test-time Augmentation for Active Learning in Medical Image
Segmentation [7.856339385917824]
This paper proposes Test-time Augmentation for Active Learning (TAAL), a novel semi-supervised active learning approach for segmentation.
Our results on a publicly-available dataset of cardiac images show that TAAL outperforms existing baseline methods in both fully-supervised and semi-supervised settings.
arXiv Detail & Related papers (2023-01-16T22:19:41Z) - Self-Supervised-RCNN for Medical Image Segmentation with Limited Data
Annotation [0.16490701092527607]
We propose an alternative deep learning training strategy based on self-supervised pretraining on unlabeled MRI scans.
Our pretraining approach first, randomly applies different distortions to random areas of unlabeled images and then predicts the type of distortions and loss of information.
The effectiveness of the proposed method for segmentation tasks in different pre-training and fine-tuning scenarios is evaluated.
arXiv Detail & Related papers (2022-07-17T13:28:52Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
We develop a novel self-supervised approach that occludes targeted regions to improve the pre-training procedure.
We show that training the agent against the prediction model can significantly improve the semantic features extracted for downstream classification tasks.
arXiv Detail & Related papers (2022-03-25T19:05:06Z) - Continual Active Learning Using Pseudo-Domains for Limited Labelling
Resources and Changing Acquisition Characteristics [2.6105699925188257]
Machine learning in medical imaging during clinical routine is impaired by changes in scanner protocols, hardware, or policies.
We propose a method for continual active learning operating on a stream of medical images in a multi-scanner setting.
arXiv Detail & Related papers (2021-11-25T13:11:49Z) - Improving Interpretability for Computer-aided Diagnosis tools on Whole
Slide Imaging with Multiple Instance Learning and Gradient-based Explanations [2.5461557112299773]
We formalize the design of WSI classification architectures and propose a piece-wise interpretability approach.
We aim at explaining how the decision is made based on tile level scoring, how these tile scores are decided and which features are used and relevant for the task.
We propose a novel manner of computing interpretability slide-level heat-maps, based on the extracted features, that improves tile-level classification performances by more than 29% for AUC.
arXiv Detail & Related papers (2020-09-29T13:39:27Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z) - LRTD: Long-Range Temporal Dependency based Active Learning for Surgical
Workflow Recognition [67.86810761677403]
We propose a novel active learning method for cost-effective surgical video analysis.
Specifically, we propose a non-local recurrent convolutional network (NL-RCNet), which introduces non-local block to capture the long-range temporal dependency.
We validate our approach on a large surgical video dataset (Cholec80) by performing surgical workflow recognition task.
arXiv Detail & Related papers (2020-04-21T09:21:22Z) - Confident Coreset for Active Learning in Medical Image Analysis [57.436224561482966]
We propose a novel active learning method, confident coreset, which considers both uncertainty and distribution for effectively selecting informative samples.
By comparative experiments on two medical image analysis tasks, we show that our method outperforms other active learning methods.
arXiv Detail & Related papers (2020-04-05T13:46:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.