Improving Interpretability for Computer-aided Diagnosis tools on Whole
Slide Imaging with Multiple Instance Learning and Gradient-based Explanations
- URL: http://arxiv.org/abs/2009.14001v1
- Date: Tue, 29 Sep 2020 13:39:27 GMT
- Title: Improving Interpretability for Computer-aided Diagnosis tools on Whole
Slide Imaging with Multiple Instance Learning and Gradient-based Explanations
- Authors: Antoine Pirovano and Hippolyte Heuberger and Sylvain Berlemont and
Sa\"id Ladjal and Isabelle Bloch
- Abstract summary: We formalize the design of WSI classification architectures and propose a piece-wise interpretability approach.
We aim at explaining how the decision is made based on tile level scoring, how these tile scores are decided and which features are used and relevant for the task.
We propose a novel manner of computing interpretability slide-level heat-maps, based on the extracted features, that improves tile-level classification performances by more than 29% for AUC.
- Score: 2.5461557112299773
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning methods are widely used for medical applications to assist
medical doctors in their daily routines. While performances reach expert's
level, interpretability (highlight how and what a trained model learned and why
it makes a specific decision) is the next important challenge that deep
learning methods need to answer to be fully integrated in the medical field. In
this paper, we address the question of interpretability in the context of whole
slide images (WSI) classification. We formalize the design of WSI
classification architectures and propose a piece-wise interpretability
approach, relying on gradient-based methods, feature visualization and multiple
instance learning context. We aim at explaining how the decision is made based
on tile level scoring, how these tile scores are decided and which features are
used and relevant for the task. After training two WSI classification
architectures on Camelyon-16 WSI dataset, highlighting discriminative features
learned, and validating our approach with pathologists, we propose a novel
manner of computing interpretability slide-level heat-maps, based on the
extracted features, that improves tile-level classification performances by
more than 29% for AUC.
Related papers
- Efficient Whole Slide Image Classification through Fisher Vector Representation [2.4472081831862655]
This study introduces a novel method for WSI classification by automating the identification and examination of the most informative patches.
Our method involves two-stages: firstly, it extracts only a few patches from the WSIs based on their pathological significance; and secondly, it employs Fisher vectors for representing features extracted from these patches.
This approach not only accentuates key pathological features within the WSI representation but also significantly reduces computational overhead, thus making the process more efficient and scalable.
arXiv Detail & Related papers (2024-11-13T11:24:12Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - WEEP: A method for spatial interpretation of weakly supervised CNN models in computational pathology [0.36096289461554343]
We propose a novel method, Wsi rEgion sElection aPproach (WEEP), for model interpretation.
We demonstrate WEEP on a binary classification task in the area of breast cancer computational pathology.
arXiv Detail & Related papers (2024-03-22T14:32:02Z) - PathM3: A Multimodal Multi-Task Multiple Instance Learning Framework for Whole Slide Image Classification and Captioning [35.24716774767677]
We present PathM3, a multi-task, multiple instance learning framework for WSI classification and captioning.
Our method overcomes data scarcity in WSI-level captions by leveraging limited WSI diagnostic caption data.
arXiv Detail & Related papers (2024-03-13T21:19:12Z) - A self-supervised framework for learning whole slide representations [52.774822784847565]
We present Slide Pre-trained Transformers (SPT) for gigapixel-scale self-supervision of whole slide images.
We benchmark SPT visual representations on five diagnostic tasks across three biomedical microscopy datasets.
arXiv Detail & Related papers (2024-02-09T05:05:28Z) - MLIP: Enhancing Medical Visual Representation with Divergence Encoder
and Knowledge-guided Contrastive Learning [48.97640824497327]
We propose a novel framework leveraging domain-specific medical knowledge as guiding signals to integrate language information into the visual domain through image-text contrastive learning.
Our model includes global contrastive learning with our designed divergence encoder, local token-knowledge-patch alignment contrastive learning, and knowledge-guided category-level contrastive learning with expert knowledge.
Notably, MLIP surpasses state-of-the-art methods even with limited annotated data, highlighting the potential of multimodal pre-training in advancing medical representation learning.
arXiv Detail & Related papers (2024-02-03T05:48:50Z) - Pixel-Level Explanation of Multiple Instance Learning Models in
Biomedical Single Cell Images [52.527733226555206]
We investigate the use of four attribution methods to explain a multiple instance learning models.
We study two datasets of acute myeloid leukemia with over 100 000 single cell images.
We compare attribution maps with the annotations of a medical expert to see how the model's decision-making differs from the human standard.
arXiv Detail & Related papers (2023-03-15T14:00:11Z) - Lesion-Aware Contrastive Representation Learning for Histopathology
Whole Slide Images Analysis [16.264758789726223]
We propose a novel contrastive representation learning framework named Lesion-Aware Contrastive Learning (LACL) for histopathology whole slide image analysis.
The experimental results demonstrate that LACL achieves the best performance in histopathology image representation learning on different datasets.
arXiv Detail & Related papers (2022-06-27T08:39:51Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
Recent state-of-the-art active learning methods have mostly leveraged Generative Adversarial Networks (GAN) for sample acquisition.
We propose in this paper a novel active learning framework that we call Maximum Discrepancy for Active Learning (MCDAL)
In particular, we utilize two auxiliary classification layers that learn tighter decision boundaries by maximizing the discrepancies among them.
arXiv Detail & Related papers (2021-07-23T06:57:08Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
We propose a novel method for Learning Binary Semantic Embedding (LBSE)
Based on the efficient and effective embedding, classification and retrieval are performed to provide interpretable computer-assisted diagnosis for histology images.
Experiments conducted on three benchmark datasets validate the superiority of LBSE under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:36:44Z) - Data Efficient and Weakly Supervised Computational Pathology on Whole
Slide Images [4.001273534300757]
computational pathology has the potential to enable objective diagnosis, therapeutic response prediction and identification of new morphological features of clinical relevance.
Deep learning-based computational pathology approaches either require manual annotation of gigapixel whole slide images (WSIs) in fully-supervised settings or thousands of WSIs with slide-level labels in a weakly-supervised setting.
Here we present CLAM - Clustering-constrained attention multiple instance learning.
arXiv Detail & Related papers (2020-04-20T23:00:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.