SCOT: Self-Supervised Contrastive Pretraining For Zero-Shot Compositional Retrieval
- URL: http://arxiv.org/abs/2501.08347v1
- Date: Sun, 12 Jan 2025 07:23:49 GMT
- Title: SCOT: Self-Supervised Contrastive Pretraining For Zero-Shot Compositional Retrieval
- Authors: Bhavin Jawade, Joao V. B. Soares, Kapil Thadani, Deen Dayal Mohan, Amir Erfan Eshratifar, Benjamin Culpepper, Paloma de Juan, Srirangaraj Setlur, Venu Govindaraju,
- Abstract summary: Compositional image retrieval (CIR) is a multimodal learning task where a model combines a query image with a user-provided text modification to retrieve a target image.<n>Existing methods primarily focus on fully-supervised learning, wherein models are trained on datasets of labeled triplets such as FashionIQ and CIRR.<n>In this work, we propose SCOT, a novel zero-shot compositional pretraining strategy that combines existing large image-text pair datasets with the generative capabilities of large language models to contrastively train an embedding composition network.
- Score: 7.248145893361865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Compositional image retrieval (CIR) is a multimodal learning task where a model combines a query image with a user-provided text modification to retrieve a target image. CIR finds applications in a variety of domains including product retrieval (e-commerce) and web search. Existing methods primarily focus on fully-supervised learning, wherein models are trained on datasets of labeled triplets such as FashionIQ and CIRR. This poses two significant challenges: (i) curating such triplet datasets is labor intensive; and (ii) models lack generalization to unseen objects and domains. In this work, we propose SCOT (Self-supervised COmpositional Training), a novel zero-shot compositional pretraining strategy that combines existing large image-text pair datasets with the generative capabilities of large language models to contrastively train an embedding composition network. Specifically, we show that the text embedding from a large-scale contrastively-pretrained vision-language model can be utilized as proxy target supervision during compositional pretraining, replacing the target image embedding. In zero-shot settings, this strategy surpasses SOTA zero-shot compositional retrieval methods as well as many fully-supervised methods on standard benchmarks such as FashionIQ and CIRR.
Related papers
- Scaling Prompt Instructed Zero Shot Composed Image Retrieval with Image-Only Data [39.17652541259225]
Composed Image Retrieval (CIR) is the task of retrieving images matching a reference image augmented with a text.
We introduce an embedding reformulation architecture that effectively combines image and text modalities.
Our model, named InstructCIR, outperforms state-of-the-art methods in zero-shot composed image retrieval on CIRR and FashionIQ datasets.
arXiv Detail & Related papers (2025-04-01T14:03:46Z) - CoLLM: A Large Language Model for Composed Image Retrieval [76.29725148964368]
Composed Image Retrieval (CIR) is a complex task that aims to retrieve images based on a multimodal query.
We present CoLLM, a one-stop framework that generates triplets on-the-fly from image-caption pairs.
We leverage Large Language Models (LLMs) to generate joint embeddings of reference images and modification texts.
arXiv Detail & Related papers (2025-03-25T17:59:50Z) - Data-Efficient Generalization for Zero-shot Composed Image Retrieval [67.46975191141928]
ZS-CIR aims to retrieve the target image based on a reference image and a text description without requiring in-distribution triplets for training.
One prevalent approach follows the vision-language pretraining paradigm that employs a mapping network to transfer the image embedding to a pseudo-word token in the text embedding space.
We propose a Data-efficient Generalization (DeG) framework, including two novel designs, namely, Textual Supplement (TS) module and Semantic-Set (S-Set)
arXiv Detail & Related papers (2025-03-07T07:49:31Z) - Debiasing Vison-Language Models with Text-Only Training [15.069736314663352]
We propose a Text-Only Debiasing framework called TOD, leveraging a text-as-image training paradigm to mitigate visual biases.
To address the limitations, we propose a Text-Only Debiasing framework called TOD, leveraging a text-as-image training paradigm to mitigate visual biases.
arXiv Detail & Related papers (2024-10-12T04:34:46Z) - Training-free Zero-shot Composed Image Retrieval via Weighted Modality Fusion and Similarity [2.724141845301679]
Composed image retrieval (CIR) formulates the query as a combination of a reference image and modified text.
We introduce a training-free approach for ZS-CIR.
Our approach is simple, easy to implement, and its effectiveness is validated through experiments on the FashionIQ and CIRR datasets.
arXiv Detail & Related papers (2024-09-07T21:52:58Z) - Visual Delta Generator with Large Multi-modal Models for Semi-supervised Composed Image Retrieval [50.72924579220149]
Composed Image Retrieval (CIR) is a task that retrieves images similar to a query, based on a provided textual modification.
Current techniques rely on supervised learning for CIR models using labeled triplets of the reference image, text, target image.
We propose a new semi-supervised CIR approach where we search for a reference and its related target images in auxiliary data.
arXiv Detail & Related papers (2024-04-23T21:00:22Z) - MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training [103.72844619581811]
We build performant Multimodal Large Language Models (MLLMs)
In particular, we study the importance of various architecture components and data choices.
We demonstrate that for large-scale multimodal pre-training using a careful mix of image-caption, interleaved image-text, and text-only data.
arXiv Detail & Related papers (2024-03-14T17:51:32Z) - Image2Sentence based Asymmetrical Zero-shot Composed Image Retrieval [92.13664084464514]
The task of composed image retrieval (CIR) aims to retrieve images based on the query image and the text describing the users' intent.
Existing methods have made great progress with the advanced large vision-language (VL) model in CIR task, however, they generally suffer from two main issues: lack of labeled triplets for model training and difficulty of deployment on resource-restricted environments.
We propose Image2Sentence based Asymmetric zero-shot composed image retrieval (ISA), which takes advantage of the VL model and only relies on unlabeled images for composition learning.
arXiv Detail & Related papers (2024-03-03T07:58:03Z) - Training-free Zero-shot Composed Image Retrieval with Local Concept Reranking [34.31345844296072]
Composed image retrieval attempts to retrieve an image of interest from gallery images through a composed query of a reference image and its corresponding modified text.
Most current composed image retrieval methods follow a supervised learning approach to training on a costly triplet dataset composed of a reference image, modified text, and a corresponding target image.
We present a new training-free zero-shot composed image retrieval method which translates the query into explicit human-understandable text.
arXiv Detail & Related papers (2023-12-14T13:31:01Z) - Vision-by-Language for Training-Free Compositional Image Retrieval [78.60509831598745]
Compositional Image Retrieval (CIR) aims to retrieve the relevant target image in a database.
Recent research sidesteps this need by using large-scale vision-language models (VLMs)
We propose to tackle CIR in a training-free manner via Vision-by-Language (CIReVL)
arXiv Detail & Related papers (2023-10-13T17:59:38Z) - Zero-shot Composed Text-Image Retrieval [72.43790281036584]
We consider the problem of composed image retrieval (CIR)
It aims to train a model that can fuse multi-modal information, e.g., text and images, to accurately retrieve images that match the query, extending the user's expression ability.
arXiv Detail & Related papers (2023-06-12T17:56:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.