論文の概要: CVaR-Based Variational Quantum Optimization for User Association in Handoff-Aware Vehicular Networks
- arxiv url: http://arxiv.org/abs/2501.08418v1
- Date: Tue, 14 Jan 2025 20:21:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 15:52:53.747725
- Title: CVaR-Based Variational Quantum Optimization for User Association in Handoff-Aware Vehicular Networks
- Title(参考訳): CVaRに基づくハンドオフ対応車両ネットワークにおけるユーザアソシエーションのための変分量子最適化
- Authors: Zijiang Yan, Hao Zhou, Jianhua Pei, Aryan Kaushik, Hina Tabassum, Ping Wang,
- Abstract要約: 本稿では、車両ネットワーク(VNet)における一般化代入問題(GAP)に対処するための、CVaRに基づく変動量子固有解法(VQE)フレームワークを提案する。
提案手法は, 目的と制約固有のペナルティのバランスを保ち, 解の質と安定性を向上させるために, 調整されたコスト関数を統合するハイブリッド量子古典構造を利用する。
本稿では,この枠組みを,ディープニューラルネットワーク(DNN)アプローチと比較して23.5%改善したVNetのユーザ連想問題に適用する。
- 参考スコア(独自算出の注目度): 23.140655547353994
- License:
- Abstract: Efficient resource allocation is essential for optimizing various tasks in wireless networks, which are usually formulated as generalized assignment problems (GAP). GAP, as a generalized version of the linear sum assignment problem, involves both equality and inequality constraints that add computational challenges. In this work, we present a novel Conditional Value at Risk (CVaR)-based Variational Quantum Eigensolver (VQE) framework to address GAP in vehicular networks (VNets). Our approach leverages a hybrid quantum-classical structure, integrating a tailored cost function that balances both objective and constraint-specific penalties to improve solution quality and stability. Using the CVaR-VQE model, we handle the GAP efficiently by focusing optimization on the lower tail of the solution space, enhancing both convergence and resilience on noisy intermediate-scale quantum (NISQ) devices. We apply this framework to a user-association problem in VNets, where our method achieves 23.5% improvement compared to the deep neural network (DNN) approach.
- Abstract(参考訳): 無線ネットワークにおける様々なタスクを最適化するためには、効率的なリソース割り当てが不可欠であり、一般にGAP(Generalized assignment problem)として定式化される。
線形和代入問題の一般化版として、GAPは等式制約と不等式制約の両方を含む。
本稿では,車載ネットワーク(VNet)におけるGAPに対処するための,CVaRに基づく変動量子固有解法(VQE)フレームワークを提案する。
提案手法は, 目的と制約固有のペナルティのバランスを保ち, ソリューションの品質と安定性を向上させるために, 調整されたコスト関数を統合するハイブリッド量子古典構造を利用する。
CVaR-VQEモデルを用いて,解空間の下端に最適化を集中させ,ノイズのある中間スケール量子(NISQ)デバイス上での収束性とレジリエンスを両立させることにより,GAPを効率的に処理する。
本稿では,この枠組みを,ディープニューラルネットワーク(DNN)アプローチと比較して23.5%改善したVNetのユーザ連想問題に適用する。
関連論文リスト
- DiffSG: A Generative Solver for Network Optimization with Diffusion Model [75.27274046562806]
拡散生成モデルはより広い範囲の解を考えることができ、学習パラメータによるより強力な一般化を示す。
拡散生成モデルの本質的な分布学習を利用して高品質な解を学習する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-13T07:56:21Z) - Improving the trainability of VQE on NISQ computers for solving portfolio optimization using convex interpolation [8.186804065389007]
ポートフォリオ最適化問題を解くために凸性を利用して変動量子固有解器(VQE)の訓練性を向上させる。
我々の提案は、実際のアプリケーションで広く使われている他の大規模最適化問題を解決するための訓練性を向上させるために拡張することができる。
論文 参考訳(メタデータ) (2024-07-08T03:51:54Z) - Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning [69.00997996453842]
本稿では,仮想ネットワークの埋め込みにおいて,入出力制御と資源配分を併用して学習する深層強化学習手法を提案する。
HRL-ACRAは,受入率と長期平均収益の両面で,最先端のベースラインを上回っていることを示す。
論文 参考訳(メタデータ) (2024-06-25T07:42:30Z) - Pointer Networks with Q-Learning for Combinatorial Optimization [55.2480439325792]
我々は、モデルフリーQ値ポリシー近似をPointer Networks(Ptr-Nets)と統合したハイブリッドニューラルネットワークであるPointer Q-Network(PQN)を紹介する。
実験により,本手法の有効性を実証し,不安定な環境でモデルをテストする。
論文 参考訳(メタデータ) (2023-11-05T12:03:58Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
我々は,学習エポックの数の増加とともに,ほぼゼロに近いトレーニング損失を達成するための最適化保証について検討した。
トレーニングサンプル数に対する閾値は,ネットワーク幅の増加とともに増加することを示す。
論文 参考訳(メタデータ) (2023-09-12T13:03:47Z) - Power Control with QoS Guarantees: A Differentiable Projection-based
Unsupervised Learning Framework [14.518558523319518]
NPハード無線リソース割り当て問題を解決する潜在的なソリューションとして、ディープニューラルネットワーク(DNN)が登場している。
マルチユーザチャネルにおける古典的電力制御問題を解決するために,教師なし学習フレームワークを提案する。
提案手法は,データレートを向上するだけでなく,既存の計算に比べて制約違反の確率をゼロにすることを示す。
論文 参考訳(メタデータ) (2023-05-31T14:11:51Z) - Quantum-Assisted Solution Paths for the Capacitated Vehicle Routing
Problem [0.0]
我々は、キャパシタントカー問題(CVRP)またはその減量版であるトラベリングセールスパーソン問題(TSP)について議論する。
今日の最も強力な古典的アルゴリズムでさえ、CVRPは古典的解決が難しい。
量子コンピューティングは、ソリューションの時間を改善する手段を提供するかもしれない。
論文 参考訳(メタデータ) (2023-04-19T13:03:50Z) - Entangled Pair Resource Allocation under Uncertain Fidelity Requirements [59.83361663430336]
量子ネットワークにおいて、効果的な絡み合いルーティングは、量子ソースと量子宛先ノード間の通信を容易にする。
本稿では,絡み合ったペアに対する資源配分モデルと,整合性保証を伴う絡み合ったルーティングモデルを提案する。
提案モデルでは, ベースラインモデルと比較して, 総コストを少なくとも20%削減できる。
論文 参考訳(メタデータ) (2023-04-10T07:16:51Z) - An Efficient Gradient Sensitive Alternate Framework for VQE with
Variable Ansatz [13.360755226969678]
本稿では,変分量子固有解器(VQE)の性能を高めるために,可変アンサッツを用いた勾配感度代替フレームワークを提案する。
本研究では,ハードウェア効率のよいアンサッツと比較して,検出した解の誤差を最大87.9%向上することを示す。
論文 参考訳(メタデータ) (2022-05-06T06:15:10Z) - Coverage and Capacity Optimization in STAR-RISs Assisted Networks: A
Machine Learning Approach [102.00221938474344]
再構成可能なインテリジェントサーフェス (STAR-RIS) アシストネットワークを同時に送信および反射するカバレッジとキャパシティ最適化のための新しいモデルを提案する。
損失関数ベースの更新戦略はコアポイントであり、各更新時にmin-normソルバによってカバレッジとキャパシティの両方の損失関数の重みを計算することができる。
解析結果から,提案手法は固定重みに基づくMOアルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-04-13T13:52:22Z) - Depth-Optimized Delay-Aware Tree (DO-DAT) for Virtual Network Function
Placement [3.5584529568201377]
ネットワーク機能(NFV)はソリューションとして認識されているが、その実現性を保証するためにはいくつかの課題に対処する必要がある。
本稿では,VNF(Virtual Network)配置問題に対する機械学習による解決策を提案する。
論文 参考訳(メタデータ) (2020-06-02T17:18:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。