A Constant Velocity Latent Dynamics Approach for Accelerating Simulation of Stiff Nonlinear Systems
- URL: http://arxiv.org/abs/2501.08423v2
- Date: Tue, 18 Feb 2025 23:51:37 GMT
- Title: A Constant Velocity Latent Dynamics Approach for Accelerating Simulation of Stiff Nonlinear Systems
- Authors: William Cole Nockolds, C. G. Krishnanunni, Tan Bui-Thanh,
- Abstract summary: Solving stiff ordinary differential equations (StODEs) requires sophisticated numerical solvers, which are often computationally expensive.
In this work, we embark on a different path which involves learning a latent dynamics for StODEs, in which one completely avoids numerical integration.
In other words, the solution of the original dynamics is encoded into a sequence of straight lines which can be decoded back to retrieve the actual solution as and when required.
- Score: 0.0
- License:
- Abstract: Solving stiff ordinary differential equations (StODEs) requires sophisticated numerical solvers, which are often computationally expensive. In particular, StODE's often cannot be solved with traditional explicit time integration schemes and one must resort to costly implicit methods to compute solutions. On the other hand, state-of-the-art machine learning (ML) based methods such as Neural ODE (NODE) poorly handle the timescale separation of various elements of the solutions to StODEs and require expensive implicit solvers for integration at inference time. In this work, we embark on a different path which involves learning a latent dynamics for StODEs, in which one completely avoids numerical integration. To that end, we consider a constant velocity latent dynamical system whose solution is a sequence of straight lines. Given the initial condition and parameters of the ODE, the encoder networks learn the slope (i.e the constant velocity) and the initial condition for the latent dynamics. In other words, the solution of the original dynamics is encoded into a sequence of straight lines which can be decoded back to retrieve the actual solution as and when required. Another key idea in our approach is a nonlinear transformation of time, which allows for the "stretching/squeezing" of time in the latent space, thereby allowing for varying levels of attention to different temporal regions in the solution. Additionally, we provide a simple universal-approximation-type proof showing that our approach can approximate the solution of stiff nonlinear system on a compact set to any degree of accuracy, {\epsilon}. We show that the dimension of the latent dynamical system in our approach is independent of {\epsilon}. Numerical investigation on prototype StODEs suggest that our method outperforms state-of-the art machine learning approaches for handling StODEs.
Related papers
- No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
This paper proposes a conceptual shift to modeling low-dimensional dynamical systems by departing from the traditional two-step modeling process.
Instead of first discovering a closed-form equation and then analyzing it, our approach, direct semantic modeling, predicts the semantic representation of the dynamical system.
Our approach not only simplifies the modeling pipeline but also enhances the transparency and flexibility of the resulting models.
arXiv Detail & Related papers (2025-01-30T18:36:48Z) - Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Balanced Neural ODEs: nonlinear model order reduction and Koopman operator approximations [0.0]
Variational Autoencoders (VAEs) are a powerful framework for learning latent representations of reduced dimensionality.
Neural ODEs excel in learning transient system dynamics.
We show that standard Latent ODEs struggle with dimensionality reduction in systems with time-varying inputs.
arXiv Detail & Related papers (2024-10-14T05:45:52Z) - Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems [3.1484174280822845]
We focus on finding parsimonious ordinary differential equation (ODE) models for nonlinear, noisy, and non-autonomous dynamical systems.
Our method, dynamic SINDy, combines variational inference with SINDy (sparse identification of nonlinear dynamics) to model time-varying coefficients of sparse ODEs.
arXiv Detail & Related papers (2024-10-02T23:00:00Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
We present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture.
We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions.
The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.
arXiv Detail & Related papers (2022-07-28T19:59:14Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - DiffPD: Differentiable Projective Dynamics with Contact [65.88720481593118]
We present DiffPD, an efficient differentiable soft-body simulator with implicit time integration.
We evaluate the performance of DiffPD and observe a speedup of 4-19 times compared to the standard Newton's method in various applications.
arXiv Detail & Related papers (2021-01-15T00:13:33Z) - Hierarchical Deep Learning of Multiscale Differential Equation
Time-Steppers [5.6385744392820465]
We develop a hierarchy of deep neural network time-steppers to approximate the flow map of the dynamical system over a disparate range of time-scales.
The resulting model is purely data-driven and leverages features of the multiscale dynamics.
We benchmark our algorithm against state-of-the-art methods, such as LSTM, reservoir computing, and clockwork RNN.
arXiv Detail & Related papers (2020-08-22T07:16:53Z) - STEER: Simple Temporal Regularization For Neural ODEs [80.80350769936383]
We propose a new regularization technique: randomly sampling the end time of the ODE during training.
The proposed regularization is simple to implement, has negligible overhead and is effective across a wide variety of tasks.
We show through experiments on normalizing flows, time series models and image recognition that the proposed regularization can significantly decrease training time and even improve performance over baseline models.
arXiv Detail & Related papers (2020-06-18T17:44:50Z) - Solving Differential Equations Using Neural Network Solution Bundles [1.2891210250935146]
We propose a neural network be used as a solution bundle, a collection of solutions to an ODE for various initial states and system parameters.
The solution bundle exhibits fast, parallelizable evaluation of the system state, facilitating the use of Bayesian inference for parameter estimation.
arXiv Detail & Related papers (2020-06-17T02:44:10Z) - Convergence and sample complexity of gradient methods for the model-free
linear quadratic regulator problem [27.09339991866556]
We show that ODE searches for optimal control for an unknown computation system by directly searching over the corresponding space of controllers.
We take a step towards demystifying the performance and efficiency of such methods by focusing on the gradient-flow dynamics set of stabilizing feedback gains and a similar result holds for the forward disctization of the ODE.
arXiv Detail & Related papers (2019-12-26T16:56:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.