Physics-Informed Latent Neural Operator for Real-time Predictions of Complex Physical Systems
- URL: http://arxiv.org/abs/2501.08428v1
- Date: Tue, 14 Jan 2025 20:38:30 GMT
- Title: Physics-Informed Latent Neural Operator for Real-time Predictions of Complex Physical Systems
- Authors: Sharmila Karumuri, Lori Graham-Brady, Somdatta Goswami,
- Abstract summary: Deep operator network (DeepONet) has shown great promise as a surrogate model for systems governed by partial differential equations (PDEs)
This work introduces PI-Latent-NO, a physics-informed latent operator learning framework that overcomes limitations.
- Score: 0.0
- License:
- Abstract: Deep operator network (DeepONet) has shown great promise as a surrogate model for systems governed by partial differential equations (PDEs), learning mappings between infinite-dimensional function spaces with high accuracy. However, achieving low generalization errors often requires highly overparameterized networks, posing significant challenges for large-scale, complex systems. To address these challenges, latent DeepONet was proposed, introducing a two-step approach: first, a reduced-order model is used to learn a low-dimensional latent space, followed by operator learning on this latent space. While effective, this method is inherently data-driven, relying on large datasets and making it difficult to incorporate governing physics into the framework. Additionally, the decoupled nature of these steps prevents end-to-end optimization and the ability to handle data scarcity. This work introduces PI-Latent-NO, a physics-informed latent operator learning framework that overcomes these limitations. Our architecture employs two coupled DeepONets in an end-to-end training scheme: the first, termed Latent-DeepONet, identifies and learns the low-dimensional latent space, while the second, Reconstruction-DeepONet, maps the latent representations back to the original physical space. By integrating governing physics directly into the training process, our approach requires significantly fewer data samples while achieving high accuracy. Furthermore, the framework is computationally and memory efficient, exhibiting nearly constant scaling behavior on a single GPU and demonstrating the potential for further efficiency gains with distributed training. We validate the proposed method on high-dimensional parametric PDEs, demonstrating its effectiveness as a proof of concept and its potential scalability for large-scale systems.
Related papers
- Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
In this paper, we introduce the conservation-informed GNN (CiGNN), an end-to-end explainable learning framework.
The network is designed to conform to the general symmetry conservation law via symmetry where conservative and non-conservative information passes over a multiscale space by a latent temporal marching strategy.
Results demonstrate that CiGNN exhibits remarkable baseline accuracy and generalizability, and is readily applicable to learning for prediction of varioustemporal dynamics.
arXiv Detail & Related papers (2024-12-30T13:55:59Z) - HSLiNets: Hyperspectral Image and LiDAR Data Fusion Using Efficient Dual Non-Linear Feature Learning Networks [7.06787067270941]
The integration of hyperspectral imaging (HSI) and LiDAR data within new linear feature spaces offers a promising solution to the challenges posed by the high-dimensionality and redundancy inherent in HSIs.
This study introduces a dual linear fused space framework that capitalizes on bidirectional reversed convolutional neural network (CNN) pathways, coupled with a specialized spatial analysis block.
The proposed method not only enhances data processing and classification accuracy, but also mitigates the computational burden typically associated with advanced models such as Transformers.
arXiv Detail & Related papers (2024-11-30T01:08:08Z) - FB-HyDON: Parameter-Efficient Physics-Informed Operator Learning of Complex PDEs via Hypernetwork and Finite Basis Domain Decomposition [0.0]
Deep operator networks (DeepONet) and neural operators have gained significant attention for their ability to map infinite-dimensional function spaces and perform zero-shot super-resolution.
We introduce Finite Basis Physics-Informed HyperDeepONet (FB-HyDON), an advanced operator architecture featuring intrinsic domain decomposition.
By leveraging hypernetworks and finite basis functions, FB-HyDON effectively mitigates the training limitations associated with existing physics-informed operator learning methods.
arXiv Detail & Related papers (2024-09-13T21:41:59Z) - Separable DeepONet: Breaking the Curse of Dimensionality in Physics-Informed Machine Learning [0.0]
In the absence of labeled datasets, we utilize the PDE residual loss to learn the physical system, an approach known as physics-informed DeepONet.
This method faces significant computational challenges, primarily due to the curse of dimensionality, as the computational cost increases exponentially with finer discretization.
We introduce the Separable DeepONet framework to address these challenges and improve scalability for high-dimensional PDEs.
arXiv Detail & Related papers (2024-07-21T16:33:56Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
Deep learning algorithms have emerged as a viable alternative for obtaining fast solutions for PDEs.
Models are usually trained on synthetic data generated by solvers, stored on disk and read back for training.
It proposes an open source online training framework for deep surrogate models.
arXiv Detail & Related papers (2023-06-28T12:02:27Z) - Learning in latent spaces improves the predictive accuracy of deep
neural operators [0.0]
L-DeepONet is an extension of standard DeepONet, which leverages latent representations of high-dimensional PDE input and output functions identified with suitable autoencoders.
We show that L-DeepONet outperforms the standard approach in terms of both accuracy and computational efficiency across diverse time-dependent PDEs.
arXiv Detail & Related papers (2023-04-15T17:13:09Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs.
Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space.
LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks.
arXiv Detail & Related papers (2023-01-30T04:58:40Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Learning the solution operator of parametric partial differential
equations with physics-informed DeepOnets [0.0]
Deep operator networks (DeepONets) are receiving increased attention thanks to their demonstrated capability to approximate nonlinear operators between infinite-dimensional Banach spaces.
We propose a novel model class coined as physics-informed DeepONets, which introduces an effective regularization mechanism for biasing the outputs of DeepOnet models towards ensuring physical consistency.
We demonstrate that this simple, yet remarkably effective extension can not only yield a significant improvement in the predictive accuracy of DeepOnets, but also greatly reduce the need for large training data-sets.
arXiv Detail & Related papers (2021-03-19T18:15:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.