Physics-informed Reduced Order Modeling of Time-dependent PDEs via Differentiable Solvers
- URL: http://arxiv.org/abs/2505.14595v1
- Date: Tue, 20 May 2025 16:47:04 GMT
- Title: Physics-informed Reduced Order Modeling of Time-dependent PDEs via Differentiable Solvers
- Authors: Nima Hosseini Dashtbayaz, Hesam Salehipour, Adrian Butscher, Nigel Morris,
- Abstract summary: We propose Physics-informed ROM ($Phi$-ROM) by incorporating differentiable PDE solvers into the training procedure.<n>Specifically, the latent space dynamics and its dependence on PDE parameters are shaped directly by the governing physics encoded in the solver.<n>Our model outperforms state-of-the-art data-driven ROMs and other physics-informed strategies by accurately generalizing to new dynamics arising from unseen parameters.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Reduced-order modeling (ROM) of time-dependent and parameterized differential equations aims to accelerate the simulation of complex high-dimensional systems by learning a compact latent manifold representation that captures the characteristics of the solution fields and their time-dependent dynamics. Although high-fidelity numerical solvers generate the training datasets, they have thus far been excluded from the training process, causing the learned latent dynamics to drift away from the discretized governing physics. This mismatch often limits generalization and forecasting capabilities. In this work, we propose Physics-informed ROM ($\Phi$-ROM) by incorporating differentiable PDE solvers into the training procedure. Specifically, the latent space dynamics and its dependence on PDE parameters are shaped directly by the governing physics encoded in the solver, ensuring a strong correspondence between the full and reduced systems. Our model outperforms state-of-the-art data-driven ROMs and other physics-informed strategies by accurately generalizing to new dynamics arising from unseen parameters, enabling long-term forecasting beyond the training horizon, maintaining continuity in both time and space, and reducing the data cost. Furthermore, $\Phi$-ROM learns to recover and forecast the solution fields even when trained or evaluated with sparse and irregular observations of the fields, providing a flexible framework for field reconstruction and data assimilation. We demonstrate the framework's robustness across different PDE solvers and highlight its broad applicability by providing an open-source JAX implementation readily extensible to other PDE systems and differentiable solvers.
Related papers
- Paving the way for scientific foundation models: enhancing generalization and robustness in PDEs with constraint-aware pre-training [49.8035317670223]
A scientific foundation model (SciFM) is emerging as a promising tool for learning transferable representations across diverse domains.<n>We propose incorporating PDE residuals into pre-training either as the sole learning signal or in combination with data loss to compensate for limited or infeasible training data.<n>Our results show that pre-training with PDE constraints significantly enhances generalization, outperforming models trained solely on solution data.
arXiv Detail & Related papers (2025-03-24T19:12:39Z) - Mechanistic PDE Networks for Discovery of Governing Equations [52.492158106791365]
We present Mechanistic PDE Networks, a model for discovery of partial differential equations from data.<n>The represented PDEs are then solved and decoded for specific tasks.<n>We develop a native, GPU-capable, parallel, sparse, and differentiable multigrid solver specialized for linear partial differential equations.
arXiv Detail & Related papers (2025-02-25T17:21:44Z) - MultiPDENet: PDE-embedded Learning with Multi-time-stepping for Accelerated Flow Simulation [48.41289705783405]
We propose a PDE-embedded network with multiscale time stepping (MultiPDENet)<n>In particular, we design a convolutional filter based on the structure of finite difference with a small number of parameters to optimize.<n>A Physics Block with a 4th-order Runge-Kutta integrator at the fine time scale is established that embeds the structure of PDEs to guide the prediction.
arXiv Detail & Related papers (2025-01-27T12:15:51Z) - Physics-Informed Latent Neural Operator for Real-time Predictions of Complex Physical Systems [0.0]
We propose PI-Latent-NO, a physics-informed latent neural operator framework that integrates governing physics directly into the learning process.<n>Our architecture features two coupled DeepONets trained end-to-end: a Latent-DeepONet that learns a low-dimensional representation of the solution, and a Reconstruction-DeepONet that maps this latent representation back to the physical space.
arXiv Detail & Related papers (2025-01-14T20:38:30Z) - Advancing Generalization in PINNs through Latent-Space Representations [71.86401914779019]
Physics-informed neural networks (PINNs) have made significant strides in modeling dynamical systems governed by partial differential equations (PDEs)<n>We propose PIDO, a novel physics-informed neural PDE solver designed to generalize effectively across diverse PDE configurations.<n>We validate PIDO on a range of benchmarks, including 1D combined equations and 2D Navier-Stokes equations.
arXiv Detail & Related papers (2024-11-28T13:16:20Z) - Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems [49.11170948406405]
We propose an unsupervised method to estimate the physical parameters of known, continuous governing equations from single videos.<n>We take the field closer to reality by recording Delfys75: our own real-world dataset of 75 videos for five different types of dynamical systems.
arXiv Detail & Related papers (2024-10-02T09:44:54Z) - PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems [31.006807854698376]
We propose a new graph learning approach, namely, Physics-encoded Message Passing Graph Network (PhyMPGN)<n>We incorporate a GNN into a numerical integrator to approximate the temporal marching of partialtemporal dynamics for a given PDE system.<n>PhyMPGN is capable of accurately predicting various types of operatortemporal dynamics on coarse unstructured meshes.
arXiv Detail & Related papers (2024-10-02T08:54:18Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
Deep learning algorithms have emerged as a viable alternative for obtaining fast solutions for PDEs.
Models are usually trained on synthetic data generated by solvers, stored on disk and read back for training.
It proposes an open source online training framework for deep surrogate models.
arXiv Detail & Related papers (2023-06-28T12:02:27Z) - Spatio-Temporal Super-Resolution of Dynamical Systems using
Physics-Informed Deep-Learning [0.0]
We propose a physics-informed deep learning-based framework to enhance spatial and temporal resolution of PDE solutions.
The framework consists of two trainable modules independently super-resolve (both in space and time) PDE solutions.
The proposed framework is well-suited for integration with traditional numerical methods to reduce computational complexity during engineering design.
arXiv Detail & Related papers (2022-12-08T18:30:18Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
We propose LordNet, a tunable and efficient neural network for modeling entanglements.
The experiments on solving Poisson's equation and (2D and 3D) Navier-Stokes equation demonstrate that the long-range entanglements can be well modeled by the LordNet.
arXiv Detail & Related papers (2022-06-19T14:41:08Z) - Learning to Accelerate Partial Differential Equations via Latent Global
Evolution [64.72624347511498]
Latent Evolution of PDEs (LE-PDE) is a simple, fast and scalable method to accelerate the simulation and inverse optimization of PDEs.
We introduce new learning objectives to effectively learn such latent dynamics to ensure long-term stability.
We demonstrate up to 128x reduction in the dimensions to update, and up to 15x improvement in speed, while achieving competitive accuracy.
arXiv Detail & Related papers (2022-06-15T17:31:24Z) - Encoding physics to learn reaction-diffusion processes [18.187800601192787]
We show how a deep learning framework that encodes given physics structure can be applied to a variety of problems regarding the PDE system regimes.
The resultant learning paradigm that encodes physics shows high accuracy, robustness, interpretability and generalizability demonstrated via extensive numerical experiments.
arXiv Detail & Related papers (2021-06-09T03:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.