Keras Sig: Efficient Path Signature Computation on GPU in Keras 3
- URL: http://arxiv.org/abs/2501.08455v1
- Date: Tue, 14 Jan 2025 22:00:01 GMT
- Title: Keras Sig: Efficient Path Signature Computation on GPU in Keras 3
- Authors: RĂ©mi Genet, Hugo Inzirillo,
- Abstract summary: Keras Sig is a high-performance pythonic library designed to compute path signature for deep learning applications.
Entirely built in Keras 3, textitKeras Sig leverages the seamless integration with the mostly used deep learning backends such as PyTorch, JAX and GPU.
- Score: 0.0
- License:
- Abstract: In this paper we introduce Keras Sig a high-performance pythonic library designed to compute path signature for deep learning applications. Entirely built in Keras 3, \textit{Keras Sig} leverages the seamless integration with the mostly used deep learning backends such as PyTorch, JAX and TensorFlow. Inspired by Kidger and Lyons (2021),we proposed a novel approach reshaping signature calculations to leverage GPU parallelism. This adjustment allows us to reduce the training time by 55\% and 5 to 10-fold improvements in direct signature computation compared to existing methods, while maintaining similar CPU performance. Relying on high-level tensor operations instead of low-level C++ code, Keras Sig significantly reduces the versioning and compatibility issues commonly encountered in deep learning libraries, while delivering superior or comparable performance across various hardware configurations. We demonstrate through extensive benchmarking that our approach scales efficiently with the length of input sequences and maintains competitive performance across various signature parameters, though bounded by memory constraints for very large signature dimensions.
Related papers
- An Efficient Sparse Kernel Generator for O(3)-Equivariant Deep Networks [0.5737287537823071]
Rotation equivariant graph neural networks yield state-of-the-art performance on spatial deep learning tasks.
Key to these models is the Clebsch-Gordon (CG) tensor product, a kernel that contracts two dense feature vectors with a highly structured sparse tensor to produce a dense output vector.
We introduce a GPU sparse kernel generator for the CG tensor product that provides significant speedup over the best existing open and closed-source implementations.
arXiv Detail & Related papers (2025-01-23T08:20:47Z) - A User's Guide to $\texttt{KSig}$: GPU-Accelerated Computation of the Signature Kernel [12.111848705677138]
The signature kernel is a positive definite kernel for sequential and temporal data.
In this chapter, we give a short introduction to $textttKSig$, a $textttScikit-Learn$ compatible Python package that implements various GPU-accelerated algorithms for computing signature kernels.
arXiv Detail & Related papers (2025-01-13T09:11:13Z) - Hierarchical Context Merging: Better Long Context Understanding for Pre-trained LLMs [61.40047491337793]
We present Hierarchical cOntext MERging (HOMER), a new training-free scheme designed to overcome the limitations of large language models.
HomeR uses a divide-and-conquer algorithm, dividing long inputs into manageable chunks.
A token reduction technique precedes each merging, ensuring memory usage efficiency.
arXiv Detail & Related papers (2024-04-16T06:34:08Z) - High Performance Computing Applied to Logistic Regression: A CPU and GPU
Implementation Comparison [0.0]
We present a versatile GPU-based parallel version of Logistic Regression (LR)
Our implementation is a direct translation of the parallel Gradient Descent Logistic Regression algorithm proposed by X. Zou et al.
Our method is particularly advantageous for real-time prediction applications like image recognition, spam detection, and fraud detection.
arXiv Detail & Related papers (2023-08-19T14:49:37Z) - INR-Arch: A Dataflow Architecture and Compiler for Arbitrary-Order
Gradient Computations in Implicit Neural Representation Processing [66.00729477511219]
Given a function represented as a computation graph, traditional architectures face challenges in efficiently computing its nth-order gradient.
We introduce INR-Arch, a framework that transforms the computation graph of an nth-order gradient into a hardware-optimized dataflow architecture.
We present results that demonstrate 1.8-4.8x and 1.5-3.6x speedup compared to CPU and GPU baselines respectively.
arXiv Detail & Related papers (2023-08-11T04:24:39Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
This work introduces a framework to develop efficient, portable Deep Learning and High Performance Computing kernels.
We decompose the kernel development in two steps: 1) Expressing the computational core using Processing Primitives (TPPs) and 2) Expressing the logical loops around TPPs in a high-level, declarative fashion.
We demonstrate the efficacy of our approach using standalone kernels and end-to-end workloads that outperform state-of-the-art implementations on diverse CPU platforms.
arXiv Detail & Related papers (2023-04-25T05:04:44Z) - SegNeXt: Rethinking Convolutional Attention Design for Semantic
Segmentation [100.89770978711464]
We present SegNeXt, a simple convolutional network architecture for semantic segmentation.
We show that convolutional attention is a more efficient and effective way to encode contextual information than the self-attention mechanism in transformers.
arXiv Detail & Related papers (2022-09-18T14:33:49Z) - Stochastic Gradient Descent without Full Data Shuffle [65.97105896033815]
CorgiPile is a hierarchical data shuffling strategy that avoids a full data shuffle while maintaining comparable convergence rate of SGD as if a full shuffle were performed.
Our results show that CorgiPile can achieve comparable convergence rate with the full shuffle based SGD for both deep learning and generalized linear models.
arXiv Detail & Related papers (2022-06-12T20:04:31Z) - Kernel methods through the roof: handling billions of points efficiently [94.31450736250918]
Kernel methods provide an elegant and principled approach to nonparametric learning, but so far could hardly be used in large scale problems.
Recent advances have shown the benefits of a number of algorithmic ideas, for example combining optimization, numerical linear algebra and random projections.
Here, we push these efforts further to develop and test a solver that takes full advantage of GPU hardware.
arXiv Detail & Related papers (2020-06-18T08:16:25Z) - Kernel Operations on the GPU, with Autodiff, without Memory Overflows [5.669790037378094]
The KeOps library provides a fast and memory-efficient GPU support for tensors whose entries are given by a mathematical formula.
KeOps alleviates the major bottleneck of tensor-centric libraries for kernel and geometric applications: memory consumption.
KeOps combines optimized C++/CUDA schemes with binders for high-level languages: Python (Numpy and PyTorch), Matlab and R.
arXiv Detail & Related papers (2020-03-27T08:54:10Z) - Signatory: differentiable computations of the signature and logsignature
transforms, on both CPU and GPU [13.503274710499971]
Signatory is a library for calculating and performing functionality related to the signature and logsignature transforms.
It implements new features not available in previous libraries, such as efficient precomputation strategies.
The library operates as a Python wrapper around C++, and is compatible with the PyTorch ecosystem.
arXiv Detail & Related papers (2020-01-03T03:15:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.