論文の概要: Alleviating Seasickness through Brain-Computer Interface-based Attention Shift
- arxiv url: http://arxiv.org/abs/2501.08518v2
- Date: Wed, 23 Jul 2025 08:01:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-24 14:06:48.978989
- Title: Alleviating Seasickness through Brain-Computer Interface-based Attention Shift
- Title(参考訳): 脳-コンピュータインタフェースによる注意変化による難易度低減
- Authors: Xiaoyu Bao, Kailin Xu, Jiawei Zhu, Haiyun Huang, Kangning Li, Qiyun Huang, Yuanqing Li,
- Abstract要約: 我々は、持続的で実用的な注目シフトを実現するために、AI駆動型脳コンピュータインタフェース(BCI)を開発した。
41人の参加者が、実際のフィードバックセッション、休息セッション、擬似フィードバックセッションからなる実世界の海事実験を完了した。
脳波解析により, 本システムは運動障害脳波のシグネチャを効果的に制御できることが判明した。
- 参考スコア(独自算出の注目度): 3.3391986987767135
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Seasickness poses a widespread problem that adversely impacts both passenger comfort and the operational efficiency of maritime crews. Although attention shift has been proposed as a potential method to alleviate symptoms of motion sickness, its efficacy remains to be rigorously validated, especially in maritime environments. In this study, we develop an AI-driven brain-computer interface (BCI) to realize sustained and practical attention shift by incorporating tasks such as breath counting. Forty-three participants completed a real-world nautical experiment consisting of a real-feedback session, a resting session, and a pseudo-feedback session. Notably, 81.39\% of the participants reported that the BCI intervention was effective. EEG analysis revealed that the proposed system can effectively regulate motion sickness EEG signatures, such as an decrease in total band power, along with an increase in theta relative power and a decrease in beta relative power. Furthermore, an indicator of attentional focus, the theta/beta ratio, exhibited a significant reduction during the real-feedback session, providing further evidence to support the effectiveness of the BCI in shifting attention. Collectively, this study presents a novel nonpharmacological, portable, and effective approach for seasickness intervention, which has the potential to open up a brand-new application domain for BCIs.
- Abstract(参考訳): 船酔いは、乗客の快適さと海員の運用効率の両方に悪影響を及ぼす広範な問題を引き起こす。
運動障害の症状を緩和する潜在的な方法として注意シフトが提案されているが、その効果は特に海洋環境において厳格に検証されている。
本研究では,呼吸計数などのタスクを組み込むことで,持続的で実践的な注意シフトを実現するために,AI駆動型脳コンピュータインタフェース(BCI)を開発した。
43人の参加者が、実際のフィードバックセッション、休息セッション、擬似フィードバックセッションからなる現実世界の海洋実験を完了した。
特に、参加者の81.39\%はBCI介入が有効であると報告している。
脳波解析により,全バンドパワーの低下やテタ相対パワーの増大,ベータ相対パワーの低下など,運動障害脳波のシグネチャを効果的に制御できることが明らかになった。
さらに,注目焦点の指標であるtheta/beta ratioは,リアルタイムセッション中に顕著な低下を示し,BCIが注目を移す際の有効性を支持する証拠となった。
本研究は,BCIの新たな応用領域を開拓する可能性を有する,新規な非医薬学的,携帯的,効果的なシーシック介入アプローチを提案する。
関連論文リスト
- Efficient Pain Recognition via Respiration Signals: A Single Cross-Attention Transformer Multi-Window Fusion Pipeline [0.8602553195689511]
The textitSecond Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN)に提出された。
論文 参考訳(メタデータ) (2025-07-29T14:58:29Z) - Airway Skill Assessment with Spatiotemporal Attention Mechanisms Using Human Gaze [2.125763116614213]
航空管理技術は救急医療において重要であり、通常主観的評価によって評価される。
本稿では,気道技能,特に気管内挿管(ETI)を評価するための機械学習アプローチを提案する。
提案システムは,ヒトの視線によって誘導される注意機構を利用して,成功・失敗のETI手順の認識を高める。
論文 参考訳(メタデータ) (2025-06-24T04:40:58Z) - Spiking Meets Attention: Efficient Remote Sensing Image Super-Resolution with Attention Spiking Neural Networks [57.17129753411926]
従来の人工ニューラルネットワーク(ANN)の代替手段としてスパイキングニューラルネットワーク(SNN)が登場
本稿では,AID,DOTA,DIORなどのリモートセンシングベンチマークにおいて,最先端の性能を実現するSpikeSRを提案する。
論文 参考訳(メタデータ) (2025-03-06T09:06:06Z) - EEG Emotion Copilot: Optimizing Lightweight LLMs for Emotional EEG Interpretation with Assisted Medical Record Generation [12.707059419820848]
本稿では,脳波信号から直接感情状態を認識する脳波感情コパイロットについて述べる。
その後、パーソナライズされた診断と治療の提案を生成し、最終的に支援された電子カルテの自動化をサポートする。
提案手法は,医療分野における情動コンピューティングの適用を推し進めることが期待される。
論文 参考訳(メタデータ) (2024-09-30T19:15:05Z) - Improving Engagement and Efficacy of mHealth Micro-Interventions for Stress Coping: an In-The-Wild Study [4.704094564944504]
パーソナライズされたコンテキスト認識介入選択アルゴリズムは、mHealth介入のエンゲージメントと有効性を改善する。
短時間でも1分間の介入は、知覚されるストレスレベルを著しく減少させる。
本研究は,個人化された文脈認識介入選択アルゴリズムを導入することで文献に寄与する。
論文 参考訳(メタデータ) (2024-07-16T11:22:22Z) - Focused State Recognition Using EEG with Eye Movement-Assisted Annotation [4.705434077981147]
脳波と眼球運動の特徴を学習するためのディープラーニングモデルは、脳活動の分類に有効である。
焦点を絞った状態は、タスクや思考に強い集中力を示し、焦点を絞らない状態は目の動きによって達成される。
論文 参考訳(メタデータ) (2024-06-15T14:06:00Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
本稿では、ディープラーニングフレームワークと互換性があり、スケーラブルな、生理学的にインスパイアされた音声認識アーキテクチャを提案する。
本研究では, 終末から終末までの勾配降下訓練が, 中枢スパイク神経ネットワークにおける神経振動の出現に繋がることを示す。
本研究は, スパイク周波数適応やリカレント接続などのフィードバック機構が, 認識性能を向上させるために, 神経活動の調節と同期に重要な役割を担っていることを明らかにする。
論文 参考訳(メタデータ) (2024-04-22T09:40:07Z) - EEG for fatigue monitoring [0.0]
脳波検査(EEG)は、生理的疲労を客観的に評価するための有望なツールとして登場した。
本稿では,脳波を用いた生理疲労のモニタリングの現状を包括的に分析することを目的とする。
論文 参考訳(メタデータ) (2024-01-28T21:01:45Z) - Adaptive Semi-Supervised Segmentation of Brain Vessels with Ambiguous
Labels [63.415444378608214]
提案手法は, 進歩的半教師付き学習, 適応的学習戦略, 境界拡張など, 革新的な手法を取り入れたものである。
3DRAデータセットによる実験結果から,メッシュベースのセグメンテーション指標を用いて,本手法の優位性を示す。
論文 参考訳(メタデータ) (2023-08-07T14:16:52Z) - Adversarial Stimuli: Attacking Brain-Computer Interfaces via Perturbed
Sensory Events [11.650381752104296]
脳波をベースとした運動画像(MI)を用いた脳神経インタフェースの実現可能性について,感覚刺激の摂動による検討を行った。
敵対的な例と同様に、これらの刺激は、BCIシステムの統合された脳感覚処理コンポーネントの限界を活用することを目的としている。
論文 参考訳(メタデータ) (2022-11-18T05:20:35Z) - Heterogeneous Hidden Markov Models for Sleep Activity Recognition from
Multi-Source Passively Sensed Data [67.60224656603823]
精神科患者の受動的活動監視は、リアルタイムでの行動変化を検出するために不可欠である。
睡眠行動認識は、患者の活動サイクルを表現する行動マーカーである。
スマートフォンから受動的に検出されたデータは、患者の生体リズムに優れた代替手段である。
論文 参考訳(メタデータ) (2022-11-08T17:29:40Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
気道セグメンテーションは肺疾患の検査、診断、予後に重要である。
いくつかの小型の気道支線(気管支や終端など)は自動セグメンテーションの難しさを著しく増す。
本稿では,新しいファジィアテンションニューラルネットワークと包括的損失関数を備える,気道セグメンテーションの効率的な手法を提案する。
論文 参考訳(メタデータ) (2022-09-05T16:38:13Z) - What's on your mind? A Mental and Perceptual Load Estimation Framework
towards Adaptive In-vehicle Interaction while Driving [55.41644538483948]
精神的な作業量と知覚的負荷が心理生理学的次元に及ぼす影響を分析する。
これらの測定値の融合により、心的および知覚的負荷レベルを分類する。
我々は、最大89%のメンタルワークロード分類精度を報告し、リアルタイムに最小限のソリューションを提供する。
論文 参考訳(メタデータ) (2022-08-10T21:19:49Z) - Learning Human Cognitive Appraisal Through Reinforcement Memory Unit [63.83306892013521]
逐次評価タスクにおける人間の認知評価の効果を生かしたリカレントニューラルネットワークのためのメモリ強調機構を提案する。
記憶増強機構を2つの正および負の強化記憶とともに評価状態を含む強化記憶ユニット(RMU)として概念化する。
論文 参考訳(メタデータ) (2022-08-06T08:56:55Z) - Estimation of Physical Activity Level and Ambient Condition Thresholds
for Respiratory Health using Smartphone Sensors [0.0]
本稿では,運動誘発呼吸状態(EiRCs)の症状を誘発する身体活動閾値を推定するために,スマートフォンにおける運動センサの可能性について検討する。
計算はSMA(Signal Magnitude Area)とEE(Energy Expenditure)の相関に基づく。
健康な個人から収集した実時間データを用いて,ElectRCを用いた個人の身体活動のレベルを調節するツールとして携帯電話の可能性を示した。
論文 参考訳(メタデータ) (2021-12-11T14:25:41Z) - Activity-Aware Deep Cognitive Fatigue Assessment using Wearables [0.0]
本稿では,個人の行動認識を一般化し,認知的疲労推定を大幅に改善する,アクティビティ対応リカレントニューラルネットワーク(emphAcRoNN)を提案する。
提案手法を5個体のリアルタイム収集データセットと27個体の公開データセットを用いて,最先端手法と比較した。
改善率19%。
論文 参考訳(メタデータ) (2021-05-05T08:41:11Z) - Anxiety Detection Leveraging Mobile Passive Sensing [53.11661460916551]
不安障害は、子供と成人の両方に影響を及ぼす最も一般的な精神医学的問題である。
スマートフォンから受動的かつ控えめなデータ収集を活用することは、古典的な方法の代替となるかもしれない。
eWellnessは、個人デバイスのセンサとユーザログデータの完全な適合性を、連続的かつ受動的に追跡するために設計された、実験的なモバイルアプリケーションである。
論文 参考訳(メタデータ) (2020-08-09T20:22:52Z) - Towards Understanding the Adversarial Vulnerability of Skeleton-based
Action Recognition [133.35968094967626]
骨格に基づく行動認識は、動的状況への強い適応性から注目を集めている。
ディープラーニング技術の助けを借りて、かなり進歩し、現在、良識のある環境で約90%の精度を達成している。
異なる対角的環境下での骨格に基づく行動認識の脆弱性に関する研究はいまだ研究されていない。
論文 参考訳(メタデータ) (2020-05-14T17:12:52Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。