Mitigating Domain Shift in Federated Learning via Intra- and Inter-Domain Prototypes
- URL: http://arxiv.org/abs/2501.08521v1
- Date: Wed, 15 Jan 2025 02:17:38 GMT
- Title: Mitigating Domain Shift in Federated Learning via Intra- and Inter-Domain Prototypes
- Authors: Huy Q. Le, Ye Lin Tun, Yu Qiao, Minh N. H. Nguyen, Keon Oh Kim, Choong Seon Hong,
- Abstract summary: We introduce a novel federated prototype learning method, which incorporates $textbfI$ntra-domain and $textbfI$nter-domain.
We propose feature alignment with MixUp-based augmented prototypes to capture the diversity of local domains and enhance the generalization of local features.
- Score: 28.507105940018704
- License:
- Abstract: Federated Learning (FL) has emerged as a decentralized machine learning technique, allowing clients to train a global model collaboratively without sharing private data. However, most FL studies ignore the crucial challenge of heterogeneous domains where each client has a distinct feature distribution, which is common in real-world scenarios. Prototype learning, which leverages the mean feature vectors within the same classes, has become a prominent solution for federated learning under domain skew. However, existing federated prototype learning methods only consider inter-domain prototypes on the server and overlook intra-domain characteristics. In this work, we introduce a novel federated prototype learning method, namely I$^2$PFL, which incorporates $\textbf{I}$ntra-domain and $\textbf{I}$nter-domain $\textbf{P}$rototypes, to mitigate domain shifts and learn a generalized global model across multiple domains in federated learning. To construct intra-domain prototypes, we propose feature alignment with MixUp-based augmented prototypes to capture the diversity of local domains and enhance the generalization of local features. Additionally, we introduce a reweighting mechanism for inter-domain prototypes to generate generalized prototypes to provide inter-domain knowledge and reduce domain skew across multiple clients. Extensive experiments on the Digits, Office-10, and PACS datasets illustrate the superior performance of our method compared to other baselines.
Related papers
- DomCLP: Domain-wise Contrastive Learning with Prototype Mixup for Unsupervised Domain Generalization [10.343546104340962]
Self-supervised learning (SSL) methods based on the instance discrimination tasks with InfoNCE have achieved remarkable success.
UDG approaches utilize contrastive learning with InfoNCE to generate representations.
We propose DomCLP, Domain-wise Contrastive Learning with Prototype Mixup.
arXiv Detail & Related papers (2024-12-12T08:59:08Z) - Learning with Alignments: Tackling the Inter- and Intra-domain Shifts for Cross-multidomain Facial Expression Recognition [16.864390181629044]
We propose a novel Learning with Alignments CMFER framework, named LA-CMFER, to handle both inter- and intra-domain shifts.
Based on this, LA-CMFER presents a dual-level inter-domain alignment method to force the model to prioritize hard-to-align samples in knowledge transfer.
To address the intra-domain shifts, LA-CMFER introduces a multi-view intra-domain alignment method with a multi-view consistency constraint.
arXiv Detail & Related papers (2024-07-08T07:43:06Z) - Taming Cross-Domain Representation Variance in Federated Prototype Learning with Heterogeneous Data Domains [8.047147770476212]
Federated learning (FL) allows collaborative machine learning training without sharing private data.
While most FL methods assume identical data domains across clients, real-world scenarios often involve heterogeneous data domains.
We introduce FedPLVM, which establishes variance-aware dual-level prototypes clustering and employs a novel $alpha$-sparsity prototype loss.
arXiv Detail & Related papers (2024-03-14T02:36:16Z) - DiPrompT: Disentangled Prompt Tuning for Multiple Latent Domain
Generalization in Federated Learning [20.51179258856028]
Federated learning (FL) has emerged as a powerful paradigm for learning from decentralized data.
Most existing FL methods assume that domain labels are provided during training, and their evaluation imposes explicit constraints on the number of domains.
We propose Disentangled Prompt Tuning (DiPrompT), a method that tackles the above restrictions by learning adaptive prompts for domain generalization in a distributed manner.
arXiv Detail & Related papers (2024-03-11T15:58:15Z) - Dynamic Instance Domain Adaptation [109.53575039217094]
Most studies on unsupervised domain adaptation assume that each domain's training samples come with domain labels.
We develop a dynamic neural network with adaptive convolutional kernels to generate instance-adaptive residuals to adapt domain-agnostic deep features to each individual instance.
Our model, dubbed DIDA-Net, achieves state-of-the-art performance on several commonly used single-source and multi-source UDA datasets.
arXiv Detail & Related papers (2022-03-09T20:05:54Z) - Federated and Generalized Person Re-identification through Domain and
Feature Hallucinating [88.77196261300699]
We study the problem of federated domain generalization (FedDG) for person re-identification (re-ID)
We propose a novel method, called "Domain and Feature Hallucinating (DFH)", to produce diverse features for learning generalized local and global models.
Our method achieves the state-of-the-art performance for FedDG on four large-scale re-ID benchmarks.
arXiv Detail & Related papers (2022-03-05T09:15:13Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Prototypical Cross-domain Self-supervised Learning for Few-shot
Unsupervised Domain Adaptation [91.58443042554903]
We propose an end-to-end Prototypical Cross-domain Self-Supervised Learning (PCS) framework for Few-shot Unsupervised Domain Adaptation (FUDA)
PCS not only performs cross-domain low-level feature alignment, but it also encodes and aligns semantic structures in the shared embedding space across domains.
Compared with state-of-the-art methods, PCS improves the mean classification accuracy over different domain pairs on FUDA by 10.5%, 3.5%, 9.0%, and 13.2% on Office, Office-Home, VisDA-2017, and DomainNet, respectively.
arXiv Detail & Related papers (2021-03-31T02:07:42Z) - Learning to Combine: Knowledge Aggregation for Multi-Source Domain
Adaptation [56.694330303488435]
We propose a Learning to Combine for Multi-Source Domain Adaptation (LtC-MSDA) framework.
In the nutshell, a knowledge graph is constructed on the prototypes of various domains to realize the information propagation among semantically adjacent representations.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-07-17T07:52:44Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
We propose a Graph-induced Prototype Alignment (GPA) framework to seek for category-level domain alignment.
In addition, in order to alleviate the negative effect of class-imbalance on domain adaptation, we design a Class-reweighted Contrastive Loss.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-03-28T17:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.