論文の概要: Doc-Guided Sent2Sent++: A Sent2Sent++ Agent with Doc-Guided memory for Document-level Machine Translation
- arxiv url: http://arxiv.org/abs/2501.08523v1
- Date: Wed, 15 Jan 2025 02:25:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 15:53:29.149063
- Title: Doc-Guided Sent2Sent++: A Sent2Sent++ Agent with Doc-Guided memory for Document-level Machine Translation
- Title(参考訳): Doc-Guided Sent2Sent++: ドキュメントレベルの機械翻訳のためのDoc-Guidedメモリを備えたSent2Sent++エージェント
- Authors: Jiaxin Guo, Yuanchang Luo, Daimeng Wei, Ling Zhang, Zongyao Li, Hengchao Shang, Zhiqiang Rao, Shaojun Li, Jinlong Yang, Zhanglin Wu, Hao Yang,
- Abstract要約: 本稿では,インクリメンタルな文レベル強制デコード戦略を利用するエージェントであるDoc-Guided Sent2Sent++を紹介する。
私たちは、Sent2Sent++が他のメソッドよりも品質、一貫性、レイテンシで優れていることを実証します。
- 参考スコア(独自算出の注目度): 11.36816954288264
- License:
- Abstract: The field of artificial intelligence has witnessed significant advancements in natural language processing, largely attributed to the capabilities of Large Language Models (LLMs). These models form the backbone of Agents designed to address long-context dependencies, particularly in Document-level Machine Translation (DocMT). DocMT presents unique challenges, with quality, consistency, and fluency being the key metrics for evaluation. Existing approaches, such as Doc2Doc and Doc2Sent, either omit sentences or compromise fluency. This paper introduces Doc-Guided Sent2Sent++, an Agent that employs an incremental sentence-level forced decoding strategy \textbf{to ensure every sentence is translated while enhancing the fluency of adjacent sentences.} Our Agent leverages a Doc-Guided Memory, focusing solely on the summary and its translation, which we find to be an efficient approach to maintaining consistency. Through extensive testing across multiple languages and domains, we demonstrate that Sent2Sent++ outperforms other methods in terms of quality, consistency, and fluency. The results indicate that, our approach has achieved significant improvements in metrics such as s-COMET, d-COMET, LTCR-$1_f$, and document-level perplexity (d-ppl). The contributions of this paper include a detailed analysis of current DocMT research, the introduction of the Sent2Sent++ decoding method, the Doc-Guided Memory mechanism, and validation of its effectiveness across languages and domains.
- Abstract(参考訳): 人工知能の分野では、自然言語処理の大幅な進歩が見られたが、これは主にLarge Language Models (LLMs) の能力に起因する。
これらのモデルは、特にドキュメントレベルの機械翻訳(DocMT)において、長いコンテキスト依存に対処するために設計されたエージェントのバックボーンを形成する。
DocMTは、品質、一貫性、レイテンシが評価の鍵となる、ユニークな課題を提示している。
Doc2DocやDoc2Sentといった既存のアプローチでは、文を省略するか、流用を妥協する。
本稿では Doc-Guided Sent2Sent++ について紹介する。Sent2Sent++ は逐次的な文レベルの強制的復号化戦略であるtextbf{to to ensure every sentence is translation with enhance the fluency of adjacent sentences。
我々のエージェントはDoc-Guided Memoryを活用し、要約と翻訳にのみ焦点をあて、一貫性を維持するための効率的なアプローチであると考えています。
複数の言語やドメインにわたる広範なテストを通じて、Sent2Sent++が他のメソッドよりも品質、一貫性、フラレンシで優れていることを示す。
その結果,本手法は, s-COMET, d-COMET, LTCR-$1_f$, 文書レベルのパープレキシティ (d-ppl) などの指標の大幅な改善を実現していることがわかった。
本稿では,現在のDocMT研究の詳細な分析,Sent2Sent++復号法の導入,Doc-Guided Memory機構の導入,言語やドメイン間での有効性の検証などについて述べる。
関連論文リスト
- DelTA: An Online Document-Level Translation Agent Based on Multi-Level Memory [96.35468670508476]
大規模言語モデル(LLM)のための文書レバレッジ翻訳エージェントであるDelTAを紹介する。
DelTAは、様々な粒度とスパンにまたがる情報を格納するマルチレベルメモリ構造を備えている。
実験結果から,DelTAは翻訳の一貫性や品質において,強いベースラインを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2024-10-10T17:30:09Z) - Contextual Document Embeddings [77.22328616983417]
本稿では,コンテキスト化された文書埋め込みのための2つの補完手法を提案する。
第一に、文書近傍を明示的にバッチ内コンテキスト損失に組み込む別のコントラスト学習目標である。
第二に、隣接する文書情報をエンコードされた表現に明示的にエンコードする新しいコンテキストアーキテクチャ。
論文 参考訳(メタデータ) (2024-10-03T14:33:34Z) - Magic Markup: Maintaining Document-External Markup with an LLM [1.0538052824177144]
修正プログラムをタグ付けし、リッチなアノテーションが進化するにつれて自動的にコードに従うことができるシステムを提案する。
我々のシステムはベンチマークで90%の精度を達成し、文書のタグを1タグあたり5秒の速さで並列に置き換えることができる。
改善の余地は残っていますが、アプリケーションのさらなる探索を正当化するのに十分なパフォーマンスが得られています。
論文 参考訳(メタデータ) (2024-03-06T05:40:31Z) - CorpusLM: Towards a Unified Language Model on Corpus for Knowledge-Intensive Tasks [20.390672895839757]
Retrieval-augmented Generation (RAG) は、事実精度を高めるための一般的なソリューションとして登場した。
従来の検索モジュールは、大きなドキュメントインデックスと生成タスクとの切り離しに依存していることが多い。
生成検索,クローズドブック生成,RAGを統合した統一言語モデルである textbfCorpusLM を提案する。
論文 参考訳(メタデータ) (2024-02-02T06:44:22Z) - A General-Purpose Multilingual Document Encoder [9.868221447090855]
階層トランスモデル(HMDE)として多言語文書エンコーダを事前訓練する。
トレーニングデータを作成するために、ウィキペディアを同等のドキュメントのソースとして利用しています。
言語間文書レベルのタスクにおいて,HMDEの有効性について検討した。
論文 参考訳(メタデータ) (2023-05-11T17:55:45Z) - Generate rather than Retrieve: Large Language Models are Strong Context
Generators [74.87021992611672]
本稿では,文書検索を大規模言語モデル生成器に置き換えることで,知識集約型タスクを解く新しい視点を提案する。
我々は,提案手法をgenRead (genRead) と呼び,まず大きな言語モデルに対して,与えられた質問に基づいて文脈文書を生成し,次に生成された文書を読み出して最終回答を生成する。
論文 参考訳(メタデータ) (2022-09-21T01:30:59Z) - Unified Pretraining Framework for Document Understanding [52.224359498792836]
文書理解のための統合事前学習フレームワークであるUDocを紹介する。
UDocは、ほとんどのドキュメント理解タスクをサポートするように設計されており、Transformerを拡張してマルチモーダル埋め込みを入力とする。
UDocの重要な特徴は、3つの自己管理的損失を利用して汎用的な表現を学ぶことである。
論文 参考訳(メタデータ) (2022-04-22T21:47:04Z) - ERNIE-DOC: The Retrospective Long-Document Modeling Transformer [24.426571160930635]
Recurrence Transformersに基づく文書レベルの言語プリトレーニングモデルであるERNIE-DOCを提案する。
ふりかえりフィード機構とリカレンスメカニズムの強化という2つのよく設計されたテクニックにより、ELNIE-DOCははるかに長いコンテキスト長を実現できます。
英語と中国語の文書レベルのタスクについて様々な実験を行った。
論文 参考訳(メタデータ) (2020-12-31T16:12:48Z) - SPECTER: Document-level Representation Learning using Citation-informed
Transformers [51.048515757909215]
SPECTERは、Transformer言語モデルの事前学習に基づいて、科学文書の文書レベルの埋め込みを生成する。
SciDocsは、引用予測から文書分類、レコメンデーションまでの7つの文書レベルのタスクからなる新しい評価ベンチマークである。
論文 参考訳(メタデータ) (2020-04-15T16:05:51Z) - Learning Contextualized Document Representations for Healthcare Answer
Retrieval [68.02029435111193]
コンテキスト談話ベクトル(英: Contextual Discourse Vectors、CDV)は、長文からの効率的な回答検索のための分散文書表現である。
本モデルでは,階層型LSTMレイヤとマルチタスクトレーニングを併用したデュアルエンコーダアーキテクチャを用いて,臨床エンティティの位置と文書の談話に沿った側面をエンコードする。
我々の一般化モデルは、医療パスランキングにおいて、最先端のベースラインを著しく上回っていることを示す。
論文 参考訳(メタデータ) (2020-02-03T15:47:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。