Scalable and High-Quality Neural Implicit Representation for 3D Reconstruction
- URL: http://arxiv.org/abs/2501.08577v1
- Date: Wed, 15 Jan 2025 04:56:26 GMT
- Title: Scalable and High-Quality Neural Implicit Representation for 3D Reconstruction
- Authors: Leyuan Yang, Bailin Deng, Juyong Zhang,
- Abstract summary: We propose a versatile, scalable and high-quality neural implicit representation to address these issues.
We model the object or scene as a fusion of multiple independent local neural SDFs with overlapping regions.
Thanks to the independent representation of each local region, our approach can not only achieve high-fidelity surface reconstruction, but also enable scalable scene reconstruction.
- Score: 34.32994179318829
- License:
- Abstract: Various SDF-based neural implicit surface reconstruction methods have been proposed recently, and have demonstrated remarkable modeling capabilities. However, due to the global nature and limited representation ability of a single network, existing methods still suffer from many drawbacks, such as limited accuracy and scale of the reconstruction. In this paper, we propose a versatile, scalable and high-quality neural implicit representation to address these issues. We integrate a divide-and-conquer approach into the neural SDF-based reconstruction. Specifically, we model the object or scene as a fusion of multiple independent local neural SDFs with overlapping regions. The construction of our representation involves three key steps: (1) constructing the distribution and overlap relationship of the local radiance fields based on object structure or data distribution, (2) relative pose registration for adjacent local SDFs, and (3) SDF blending. Thanks to the independent representation of each local region, our approach can not only achieve high-fidelity surface reconstruction, but also enable scalable scene reconstruction. Extensive experimental results demonstrate the effectiveness and practicality of our proposed method.
Related papers
- VortSDF: 3D Modeling with Centroidal Voronoi Tesselation on Signed Distance Field [5.573454319150408]
We introduce a volumetric optimization framework that combines explicit SDF fields with a shallow color network, in order to estimate 3D shape properties over tetrahedral grids.
Experimental results with Chamfer statistics validate this approach with unprecedented reconstruction quality on various scenarios such as objects, open scenes or human.
arXiv Detail & Related papers (2024-07-29T09:46:39Z) - NC-SDF: Enhancing Indoor Scene Reconstruction Using Neural SDFs with View-Dependent Normal Compensation [13.465401006826294]
We present NC-SDF, a neural signed distance field (SDF) 3D reconstruction framework with view-dependent normal compensation (NC)
By adaptively learning and correcting the biases, our NC-SDF effectively mitigates the adverse impact of inconsistent supervision.
Experiments on synthetic and real-world datasets demonstrate that NC-SDF outperforms existing approaches in terms of reconstruction quality.
arXiv Detail & Related papers (2024-05-01T06:26:35Z) - Neural Vector Fields: Generalizing Distance Vector Fields by Codebooks
and Zero-Curl Regularization [73.3605319281966]
We propose a novel 3D representation, Neural Vector Fields (NVF), which adopts the explicit learning process to manipulate meshes and implicit unsigned distance function (UDF) representation to break the barriers in resolution and topology.
We evaluate both NVFs on four surface reconstruction scenarios, including watertight vs non-watertight shapes, category-agnostic reconstruction vs category-unseen reconstruction, category-specific, and cross-domain reconstruction.
arXiv Detail & Related papers (2023-09-04T10:42:56Z) - MV-DeepSDF: Implicit Modeling with Multi-Sweep Point Clouds for 3D
Vehicle Reconstruction in Autonomous Driving [25.088617195439344]
We propose a novel framework, dubbed MV-DeepSDF, which estimates the optimal Signed Distance Function (SDF) shape representation from multi-sweep point clouds.
We conduct thorough experiments on two real-world autonomous driving datasets.
arXiv Detail & Related papers (2023-08-21T15:48:15Z) - Shape, Pose, and Appearance from a Single Image via Bootstrapped
Radiance Field Inversion [54.151979979158085]
We introduce a principled end-to-end reconstruction framework for natural images, where accurate ground-truth poses are not available.
We leverage an unconditional 3D-aware generator, to which we apply a hybrid inversion scheme where a model produces a first guess of the solution.
Our framework can de-render an image in as few as 10 steps, enabling its use in practical scenarios.
arXiv Detail & Related papers (2022-11-21T17:42:42Z) - NeurAR: Neural Uncertainty for Autonomous 3D Reconstruction [64.36535692191343]
Implicit neural representations have shown compelling results in offline 3D reconstruction and also recently demonstrated the potential for online SLAM systems.
This paper addresses two key challenges: 1) seeking a criterion to measure the quality of the candidate viewpoints for the view planning based on the new representations, and 2) learning the criterion from data that can generalize to different scenes instead of hand-crafting one.
Our method demonstrates significant improvements on various metrics for the rendered image quality and the geometry quality of the reconstructed 3D models when compared with variants using TSDF or reconstruction without view planning.
arXiv Detail & Related papers (2022-07-22T10:05:36Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
State-of-the-art neural implicit methods allow for high-quality reconstructions of simple scenes from many input views.
This is caused primarily by the inherent ambiguity in the RGB reconstruction loss that does not provide enough constraints.
Motivated by recent advances in the area of monocular geometry prediction, we explore the utility these cues provide for improving neural implicit surface reconstruction.
arXiv Detail & Related papers (2022-06-01T17:58:15Z) - BNV-Fusion: Dense 3D Reconstruction using Bi-level Neural Volume Fusion [85.24673400250671]
We present Bi-level Neural Volume Fusion (BNV-Fusion), which leverages recent advances in neural implicit representations and neural rendering for dense 3D reconstruction.
In order to incrementally integrate new depth maps into a global neural implicit representation, we propose a novel bi-level fusion strategy.
We evaluate the proposed method on multiple datasets quantitatively and qualitatively, demonstrating a significant improvement over existing methods.
arXiv Detail & Related papers (2022-04-03T19:33:09Z) - Convolutional Occupancy Networks [88.48287716452002]
We propose Convolutional Occupancy Networks, a more flexible implicit representation for detailed reconstruction of objects and 3D scenes.
By combining convolutional encoders with implicit occupancy decoders, our model incorporates inductive biases, enabling structured reasoning in 3D space.
We empirically find that our method enables the fine-grained implicit 3D reconstruction of single objects, scales to large indoor scenes, and generalizes well from synthetic to real data.
arXiv Detail & Related papers (2020-03-10T10:17:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.