Convolutional Occupancy Networks
- URL: http://arxiv.org/abs/2003.04618v2
- Date: Sat, 1 Aug 2020 20:38:29 GMT
- Title: Convolutional Occupancy Networks
- Authors: Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys,
Andreas Geiger
- Abstract summary: We propose Convolutional Occupancy Networks, a more flexible implicit representation for detailed reconstruction of objects and 3D scenes.
By combining convolutional encoders with implicit occupancy decoders, our model incorporates inductive biases, enabling structured reasoning in 3D space.
We empirically find that our method enables the fine-grained implicit 3D reconstruction of single objects, scales to large indoor scenes, and generalizes well from synthetic to real data.
- Score: 88.48287716452002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, implicit neural representations have gained popularity for
learning-based 3D reconstruction. While demonstrating promising results, most
implicit approaches are limited to comparably simple geometry of single objects
and do not scale to more complicated or large-scale scenes. The key limiting
factor of implicit methods is their simple fully-connected network architecture
which does not allow for integrating local information in the observations or
incorporating inductive biases such as translational equivariance. In this
paper, we propose Convolutional Occupancy Networks, a more flexible implicit
representation for detailed reconstruction of objects and 3D scenes. By
combining convolutional encoders with implicit occupancy decoders, our model
incorporates inductive biases, enabling structured reasoning in 3D space. We
investigate the effectiveness of the proposed representation by reconstructing
complex geometry from noisy point clouds and low-resolution voxel
representations. We empirically find that our method enables the fine-grained
implicit 3D reconstruction of single objects, scales to large indoor scenes,
and generalizes well from synthetic to real data.
Related papers
- Optimizing 3D Geometry Reconstruction from Implicit Neural Representations [2.3940819037450987]
Implicit neural representations have emerged as a powerful tool in learning 3D geometry.
We present a novel approach that both reduces computational expenses and enhances the capture of fine details.
arXiv Detail & Related papers (2024-10-16T16:36:23Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - SHINE-Mapping: Large-Scale 3D Mapping Using Sparse Hierarchical Implicit
Neural Representations [37.733802382489515]
This paper addresses the problems of achieving large-scale 3D reconstructions with implicit representations using 3D LiDAR measurements.
We learn and store implicit features through an octree-based hierarchical structure, which is sparse and sparse.
Our experiments show that our 3D reconstructions are more accurate, complete, and memory-efficient than current state-of-the-art 3D mapping methods.
arXiv Detail & Related papers (2022-10-05T14:38:49Z) - Object Scene Representation Transformer [56.40544849442227]
We introduce Object Scene Representation Transformer (OSRT), a 3D-centric model in which individual object representations naturally emerge through novel view synthesis.
OSRT scales to significantly more complex scenes with larger diversity of objects and backgrounds than existing methods.
It is multiple orders of magnitude faster at compositional rendering thanks to its light field parametrization and the novel Slot Mixer decoder.
arXiv Detail & Related papers (2022-06-14T15:40:47Z) - Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible
Neural Networks [118.20778308823779]
We present a novel 3D primitive representation that defines primitives using an Invertible Neural Network (INN)
Our model learns to parse 3D objects into semantically consistent part arrangements without any part-level supervision.
arXiv Detail & Related papers (2021-03-18T17:59:31Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
Reconstructing high-fidelity 3D objects from sparse, partial observation is crucial for various applications in computer vision, robotics, and graphics.
Recent neural implicit modeling methods show promising results on synthetic or dense datasets.
But, they perform poorly on real-world data that is sparse and noisy.
This paper analyzes the root cause of such deficient performance of a popular neural implicit model.
arXiv Detail & Related papers (2021-01-18T03:24:48Z) - RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction [19.535169371240073]
We introduce RfD-Net that jointly detects and reconstructs dense object surfaces directly from point clouds.
We decouple the instance reconstruction into global object localization and local shape prediction.
Our approach consistently outperforms the state-of-the-arts and improves over 11 of mesh IoU in object reconstruction.
arXiv Detail & Related papers (2020-11-30T12:58:05Z) - Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from
a Single RGB Image [102.44347847154867]
We propose a novel formulation that allows to jointly recover the geometry of a 3D object as a set of primitives.
Our model recovers the higher level structural decomposition of various objects in the form of a binary tree of primitives.
Our experiments on the ShapeNet and D-FAUST datasets demonstrate that considering the organization of parts indeed facilitates reasoning about 3D geometry.
arXiv Detail & Related papers (2020-04-02T17:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.