LoRS: Efficient Low-Rank Adaptation for Sparse Large Language Model
- URL: http://arxiv.org/abs/2501.08582v1
- Date: Wed, 15 Jan 2025 05:07:06 GMT
- Title: LoRS: Efficient Low-Rank Adaptation for Sparse Large Language Model
- Authors: Yuxuan Hu, Jing Zhang, Xiaodong Chen, Zhe Zhao, Cuiping Li, Hong Chen,
- Abstract summary: Existing low-rank adaptation (LoRA) methods face challenges on sparse large language models (LLMs) due to the inability to maintain sparsity.
Recent works introduced methods that maintain sparsity by augmenting LoRA techniques with additional masking mechanisms.
We introduce LoRS, an innovative method designed to achieve both memory and computation efficiency when fine-tuning sparse LLMs.
- Score: 21.98687961440789
- License:
- Abstract: Existing low-rank adaptation (LoRA) methods face challenges on sparse large language models (LLMs) due to the inability to maintain sparsity. Recent works introduced methods that maintain sparsity by augmenting LoRA techniques with additional masking mechanisms. Despite these successes, such approaches suffer from an increased memory and computation overhead, which affects efficiency of LoRA methods. In response to this limitation, we introduce LoRS, an innovative method designed to achieve both memory and computation efficiency when fine-tuning sparse LLMs. To mitigate the substantial memory and computation demands associated with preserving sparsity, our approach incorporates strategies of weight recompute and computational graph rearrangement. In addition, we also improve the effectiveness of LoRS through better adapter initialization. These innovations lead to a notable reduction in memory and computation consumption during the fine-tuning phase, all while achieving performance levels that outperform existing LoRA approaches.
Related papers
- GeLoRA: Geometric Adaptive Ranks For Efficient LoRA Fine-tuning [2.7446241148152253]
Fine-tuning large language models (LLMs) is computationally intensive because it requires updating all parameters.
Low-Rank Adaptation (LoRA) improves efficiency by modifying only a subset of weights but introduces a trade-off between expressivity and computational cost.
We propose Geometric Low-Rank Adaptation (GeLoRA), a novel framework that computes the intrinsic dimensionality of hidden state representations to adaptively select LoRA ranks.
arXiv Detail & Related papers (2024-12-12T13:04:54Z) - LoRA-Mini : Adaptation Matrices Decomposition and Selective Training [2.0670689746336]
Low-Rank Adaptation (LoRA) has emerged as a promising solution, enabling parameter-efficient fine-tuning by reducing the number of trainable parameters.
We propose LoRA-Mini, an optimized adaptation of LoRA that improves parameter efficiency by splitting low-rank matrices into four parts.
This approach achieves upto a 20x reduction compared to standard LoRA in the number of trainable parameters while preserving performance levels comparable to standard LoRA.
arXiv Detail & Related papers (2024-11-24T12:21:14Z) - LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
Low-rank adaption (LoRA) is a widely used parameter-efficient finetuning method for LLM that reduces memory requirements.
This paper introduces LoRA-RITE, a novel adaptive matrix preconditioning method for LoRA optimization.
arXiv Detail & Related papers (2024-10-27T22:57:12Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - GeoLoRA: Geometric integration for parameter efficient fine-tuning [6.701651480567394]
Low-Rank Adaptation (LoRA) has become a widely used method for parameter-efficient fine-tuning of pre-trained neural networks.
We introduce GeoLoRA, a novel approach that addresses the limitations by leveraging dynamical low-rank approximation theory.
We demonstrate the effectiveness of GeoLoRA on several state-of-the-art benchmarks, showing that it outperforms existing methods in both accuracy and computational efficiency.
arXiv Detail & Related papers (2024-10-24T13:26:10Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) is an efficient way to fine-tune models by optimizing only a low-rank matrix.
A solution that appears flat in the LoRA space may exist sharp directions in the full parameter space, potentially harming generalization performance.
We propose Flat-LoRA, an efficient approach that seeks a low-rank adaptation located in a flat region of the full parameter space.
arXiv Detail & Related papers (2024-09-22T11:24:10Z) - Enhancing Parameter Efficiency and Generalization in Large-Scale Models: A Regularized and Masked Low-Rank Adaptation Approach [10.980433187379868]
Low-Rank Adaptation (LoRA) has been developed to reduce resource consumption while maintaining satisfactory fine-tuning results.
This paper investigates the intrinsic dimension of the matrix updates approximated by the LoRA method and reveals the performance benefits of increasing this intrinsic dimension.
arXiv Detail & Related papers (2024-07-16T15:26:31Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
We propose an innovative METL strategy called SHERL for resource-limited scenarios.
In the early route, intermediate outputs are consolidated via an anti-redundancy operation.
In the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead.
arXiv Detail & Related papers (2024-07-10T10:22:35Z) - MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning [105.11844150736536]
Low-rank adaptation is a popular parameter-efficient fine-tuning method for large language models.
We propose a new method called MoRA, which employs a square matrix to achieve high-rank updating while maintaining the same number of trainable parameters.
Our method outperforms LoRA on memory-intensive tasks and achieves comparable performance on other tasks.
arXiv Detail & Related papers (2024-05-20T15:48:32Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
We introduce sparse low-rank adaptation (SoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process.
Our approach strengthens the representation power of LoRA by initializing it with a higher rank, while efficiently taming a temporarily increased number of parameters.
Our experimental results demonstrate that SoRA can outperform other baselines even with 70% retained parameters and 70% training time.
arXiv Detail & Related papers (2023-11-20T11:56:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.