Dynamic Knowledge Integration for Enhanced Vision-Language Reasoning
- URL: http://arxiv.org/abs/2501.08597v1
- Date: Wed, 15 Jan 2025 05:45:04 GMT
- Title: Dynamic Knowledge Integration for Enhanced Vision-Language Reasoning
- Authors: Julian Perry, Surasakdi Siripong, Thanakorn Phonchai,
- Abstract summary: We propose an Adaptive Knowledge-Guided Pretraining for Large Vision-Language Models (AKGP-LVLM)
It incorporates structured and unstructured knowledge into LVLMs during pretraining and fine-tuning.
We evaluate our method on four benchmark datasets, demonstrating significant performance improvements over state-of-the-art models.
- Score: 0.0
- License:
- Abstract: Large Vision-Language Models (LVLMs) have demonstrated impressive capabilities in multimodal tasks, but their performance is often constrained by the lack of external knowledge integration, limiting their ability to handle knowledge-intensive tasks such as visual question answering and reasoning. To address this challenge, we propose a novel method, Adaptive Knowledge-Guided Pretraining for Large Vision-Language Models (AKGP-LVLM), which dynamically incorporates structured and unstructured knowledge into LVLMs during pretraining and fine-tuning. Our approach employs a knowledge encoder to represent external knowledge, a retrieval mechanism to select task-relevant information, and a dynamic adaptor to align multimodal and knowledge representations effectively. We evaluate our method on four benchmark datasets, demonstrating significant performance improvements over state-of-the-art models. Furthermore, human evaluations highlight the superior correctness and relevance of our model's outputs. Extensive analyses confirm the robustness, efficiency, and scalability of AKGP-LVLM, making it a compelling solution for real-world knowledge-intensive tasks.
Related papers
- WisdomBot: Tuning Large Language Models with Artificial Intelligence Knowledge [17.74988145184004]
Large language models (LLMs) have emerged as powerful tools in natural language processing (NLP)
This paper presents a novel LLM for education named WisdomBot, which combines the power of LLMs with educational theories.
We introduce two key enhancements during inference, i.e., local knowledge base retrieval augmentation and search engine retrieval augmentation during inference.
arXiv Detail & Related papers (2025-01-22T13:36:46Z) - KBAlign: Efficient Self Adaptation on Specific Knowledge Bases [73.34893326181046]
Large language models (LLMs) usually rely on retrieval-augmented generation to exploit knowledge materials in an instant manner.
We propose KBAlign, an approach designed for efficient adaptation to downstream tasks involving knowledge bases.
Our method utilizes iterative training with self-annotated data such as Q&A pairs and revision suggestions, enabling the model to grasp the knowledge content efficiently.
arXiv Detail & Related papers (2024-11-22T08:21:03Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - RoRA-VLM: Robust Retrieval-Augmented Vision Language Models [41.09545760534495]
RORA-VLM is a novel and robust retrieval augmentation framework specifically tailored for vision-language models.
We conduct extensive experiments to validate the effectiveness and robustness of our proposed methods on three widely adopted benchmark datasets.
arXiv Detail & Related papers (2024-10-11T14:51:00Z) - Large Language Models are Limited in Out-of-Context Knowledge Reasoning [65.72847298578071]
Large Language Models (LLMs) possess extensive knowledge and strong capabilities in performing in-context reasoning.
This paper focuses on a significant aspect of out-of-context reasoning: Out-of-Context Knowledge Reasoning (OCKR), which is to combine multiple knowledge to infer new knowledge.
arXiv Detail & Related papers (2024-06-11T15:58:59Z) - Towards Automated Knowledge Integration From Human-Interpretable Representations [55.2480439325792]
We introduce and motivate theoretically the principles of informed meta-learning enabling automated and controllable inductive bias selection.
We empirically demonstrate the potential benefits and limitations of informed meta-learning in improving data efficiency and generalisation.
arXiv Detail & Related papers (2024-02-25T15:08:37Z) - Thrust: Adaptively Propels Large Language Models with External Knowledge [58.72867916604562]
Large-scale pre-trained language models (PTLMs) are shown to encode rich knowledge in their model parameters.
The inherent knowledge in PTLMs can be opaque or static, making external knowledge necessary.
We propose the instance-level adaptive propulsion of external knowledge (IAPEK), where we only conduct the retrieval when necessary.
arXiv Detail & Related papers (2023-07-19T20:16:46Z) - Retrieval-based Knowledge Augmented Vision Language Pre-training [9.779887832992435]
Key challenge of knowledge-augmented pre-training is the lack of clear connections between knowledge and multi-modal data.
In this study, we propose REtrieval-based knowledge Augmented Vision Language (REAVL), a novel knowledge-augmented pre-training framework.
For the first time, we introduce a knowledge-aware self-supervised learning scheme that efficiently establishes the correspondence between knowledge and multi-modal data.
arXiv Detail & Related papers (2023-04-27T02:23:47Z) - LM-CORE: Language Models with Contextually Relevant External Knowledge [13.451001884972033]
We argue that storing large amounts of knowledge in the model parameters is sub-optimal given the ever-growing amounts of knowledge and resource requirements.
We present LM-CORE -- a general framework to achieve this -- that allows textitdecoupling of the language model training from the external knowledge source.
Experimental results show that LM-CORE, having access to external knowledge, achieves significant and robust outperformance over state-of-the-art knowledge-enhanced language models on knowledge probing tasks.
arXiv Detail & Related papers (2022-08-12T18:59:37Z) - KAT: A Knowledge Augmented Transformer for Vision-and-Language [56.716531169609915]
We propose a novel model - Knowledge Augmented Transformer (KAT) - which achieves a strong state-of-the-art result on the open-domain multimodal task of OK-VQA.
Our approach integrates implicit and explicit knowledge in an end to end encoder-decoder architecture, while still jointly reasoning over both knowledge sources during answer generation.
An additional benefit of explicit knowledge integration is seen in improved interpretability of model predictions in our analysis.
arXiv Detail & Related papers (2021-12-16T04:37:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.