SPEQ: Stabilization Phases for Efficient Q-Learning in High Update-To-Data Ratio Reinforcement Learning
- URL: http://arxiv.org/abs/2501.08669v1
- Date: Wed, 15 Jan 2025 09:04:19 GMT
- Title: SPEQ: Stabilization Phases for Efficient Q-Learning in High Update-To-Data Ratio Reinforcement Learning
- Authors: Carlo Romeo, Girolamo Macaluso, Alessandro Sestini, Andrew D. Bagdanov,
- Abstract summary: Recent off-policy algorithms improve sample efficiency by increasing the Update-To-Data ratio and performing more gradient updates per environment interaction.
While this improves sample efficiency, it significantly increases computational cost due to the higher number of gradient updates required.
We propose a sample-efficient method to improve computational efficiency by separating training into distinct learning phases.
- Score: 51.10866035483686
- License:
- Abstract: A key challenge in Deep Reinforcement Learning is sample efficiency, especially in real-world applications where collecting environment interactions is expensive or risky. Recent off-policy algorithms improve sample efficiency by increasing the Update-To-Data (UTD) ratio and performing more gradient updates per environment interaction. While this improves sample efficiency, it significantly increases computational cost due to the higher number of gradient updates required. In this paper we propose a sample-efficient method to improve computational efficiency by separating training into distinct learning phases in order to exploit gradient updates more effectively. Our approach builds on top of the Dropout Q-Functions (DroQ) algorithm and alternates between an online, low UTD ratio training phase, and an offline stabilization phase. During the stabilization phase, we fine-tune the Q-functions without collecting new environment interactions. This process improves the effectiveness of the replay buffer and reduces computational overhead. Our experimental results on continuous control problems show that our method achieves results comparable to state-of-the-art, high UTD ratio algorithms while requiring 56\% fewer gradient updates and 50\% less training time than DroQ. Our approach offers an effective and computationally economical solution while maintaining the same sample efficiency as the more costly, high UTD ratio state-of-the-art.
Related papers
- Scaling Off-Policy Reinforcement Learning with Batch and Weight Normalization [15.605124749589946]
CrossQ has demonstrated state-of-the-art sample efficiency with a low update-to-data (UTD) ratio of 1.
We identify challenges in the training dynamics, which are emphasized by higher UTD ratios.
Our proposed approach reliably scales with increasing UTD ratios, achieving competitive performance across 25 challenging continuous control tasks.
arXiv Detail & Related papers (2025-02-11T12:55:32Z) - MAD-TD: Model-Augmented Data stabilizes High Update Ratio RL [20.22674077197914]
Recent work has explored updating neural networks with large numbers of gradient steps for every new sample.
High update-to-data ratios introduce instability to the training process.
Our method, Model-Augmented Data for Temporal Difference learning (MAD-TD), uses small amounts of generated data to stabilize high UTD training.
arXiv Detail & Related papers (2024-10-11T15:13:17Z) - Normalization and effective learning rates in reinforcement learning [52.59508428613934]
Normalization layers have recently experienced a renaissance in the deep reinforcement learning and continual learning literature.
We show that normalization brings with it a subtle but important side effect: an equivalence between growth in the norm of the network parameters and decay in the effective learning rate.
We propose to make the learning rate schedule explicit with a simple re- parameterization which we call Normalize-and-Project.
arXiv Detail & Related papers (2024-07-01T20:58:01Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
Federated learning (FL) is a promising paradigm to enable collaborative model training with decentralized data.
The training process of Large Language Models (LLMs) generally incurs the update of significant parameters.
This paper proposes an efficient partial prompt tuning approach to improve performance and efficiency simultaneously.
arXiv Detail & Related papers (2023-10-23T16:37:59Z) - Towards Memory- and Time-Efficient Backpropagation for Training Spiking
Neural Networks [70.75043144299168]
Spiking Neural Networks (SNNs) are promising energy-efficient models for neuromorphic computing.
We propose the Spatial Learning Through Time (SLTT) method that can achieve high performance while greatly improving training efficiency.
Our method achieves state-of-the-art accuracy on ImageNet, while the memory cost and training time are reduced by more than 70% and 50%, respectively, compared with BPTT.
arXiv Detail & Related papers (2023-02-28T05:01:01Z) - Understanding the effect of varying amounts of replay per step [0.0]
We study the effect of varying amounts of replay per step in a well-known model-free algorithm: Deep Q-Network (DQN) in the Mountain Car environment.
arXiv Detail & Related papers (2023-02-20T20:54:11Z) - Online Convolutional Re-parameterization [51.97831675242173]
We present online convolutional re- parameterization (OREPA), a two-stage pipeline, aiming to reduce the huge training overhead by squeezing the complex training-time block into a single convolution.
Compared with the state-of-the-art re-param models, OREPA is able to save the training-time memory cost by about 70% and accelerate the training speed by around 2x.
We also conduct experiments on object detection and semantic segmentation and show consistent improvements on the downstream tasks.
arXiv Detail & Related papers (2022-04-02T09:50:19Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.