Normalization and effective learning rates in reinforcement learning
- URL: http://arxiv.org/abs/2407.01800v1
- Date: Mon, 1 Jul 2024 20:58:01 GMT
- Title: Normalization and effective learning rates in reinforcement learning
- Authors: Clare Lyle, Zeyu Zheng, Khimya Khetarpal, James Martens, Hado van Hasselt, Razvan Pascanu, Will Dabney,
- Abstract summary: Normalization layers have recently experienced a renaissance in the deep reinforcement learning and continual learning literature.
We show that normalization brings with it a subtle but important side effect: an equivalence between growth in the norm of the network parameters and decay in the effective learning rate.
We propose to make the learning rate schedule explicit with a simple re- parameterization which we call Normalize-and-Project.
- Score: 52.59508428613934
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Normalization layers have recently experienced a renaissance in the deep reinforcement learning and continual learning literature, with several works highlighting diverse benefits such as improving loss landscape conditioning and combatting overestimation bias. However, normalization brings with it a subtle but important side effect: an equivalence between growth in the norm of the network parameters and decay in the effective learning rate. This becomes problematic in continual learning settings, where the resulting effective learning rate schedule may decay to near zero too quickly relative to the timescale of the learning problem. We propose to make the learning rate schedule explicit with a simple re-parameterization which we call Normalize-and-Project (NaP), which couples the insertion of normalization layers with weight projection, ensuring that the effective learning rate remains constant throughout training. This technique reveals itself as a powerful analytical tool to better understand learning rate schedules in deep reinforcement learning, and as a means of improving robustness to nonstationarity in synthetic plasticity loss benchmarks along with both the single-task and sequential variants of the Arcade Learning Environment. We also show that our approach can be easily applied to popular architectures such as ResNets and transformers while recovering and in some cases even slightly improving the performance of the base model in common stationary benchmarks.
Related papers
- Dynamic Learning Rate for Deep Reinforcement Learning: A Bandit Approach [0.9549646359252346]
We propose dynamic Learning Rate for deep Reinforcement Learning (LRRL)
LRRL is a meta-learning approach that selects the learning rate based on the agent's performance during training.
Our empirical results demonstrate that LRRL can substantially improve the performance of deep RL algorithms.
arXiv Detail & Related papers (2024-10-16T14:15:28Z) - Temporal-Difference Variational Continual Learning [89.32940051152782]
A crucial capability of Machine Learning models in real-world applications is the ability to continuously learn new tasks.
In Continual Learning settings, models often struggle to balance learning new tasks with retaining previous knowledge.
We propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations.
arXiv Detail & Related papers (2024-10-10T10:58:41Z) - Contrastive-Adversarial and Diffusion: Exploring pre-training and fine-tuning strategies for sulcal identification [3.0398616939692777]
Techniques like adversarial learning, contrastive learning, diffusion denoising learning, and ordinary reconstruction learning have become standard.
The study aims to elucidate the advantages of pre-training techniques and fine-tuning strategies to enhance the learning process of neural networks.
arXiv Detail & Related papers (2024-05-29T15:44:51Z) - Loss Dynamics of Temporal Difference Reinforcement Learning [36.772501199987076]
We study the case learning curves for temporal difference learning of a value function with linear function approximators.
We study how learning dynamics and plateaus depend on feature structure, learning rate, discount factor, and reward function.
arXiv Detail & Related papers (2023-07-10T18:17:50Z) - Continual Learning with Pretrained Backbones by Tuning in the Input
Space [44.97953547553997]
The intrinsic difficulty in adapting deep learning models to non-stationary environments limits the applicability of neural networks to real-world tasks.
We propose a novel strategy to make the fine-tuning procedure more effective, by avoiding to update the pre-trained part of the network and learning not only the usual classification head, but also a set of newly-introduced learnable parameters.
arXiv Detail & Related papers (2023-06-05T15:11:59Z) - Deep Active Learning by Leveraging Training Dynamics [57.95155565319465]
We propose a theory-driven deep active learning method (dynamicAL) which selects samples to maximize training dynamics.
We show that dynamicAL not only outperforms other baselines consistently but also scales well on large deep learning models.
arXiv Detail & Related papers (2021-10-16T16:51:05Z) - A Loss Curvature Perspective on Training Instability in Deep Learning [28.70491071044542]
We study the evolution of the loss Hessian across many classification tasks in order to understand the effect curvature of the loss has on the training dynamics.
Inspired by the conditioning perspective, we show that learning rate warmup can improve training stability just as much as batch normalization.
arXiv Detail & Related papers (2021-10-08T20:25:48Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
We propose an Adaptive Gradient Method with Resilience and Momentum (AdaRem)
AdaRem adjusts the parameter-wise learning rate according to whether the direction of one parameter changes in the past is aligned with the direction of the current gradient.
Our method outperforms previous adaptive learning rate-based algorithms in terms of the training speed and the test error.
arXiv Detail & Related papers (2020-10-21T14:49:00Z) - Bridging the Imitation Gap by Adaptive Insubordination [88.35564081175642]
We show that when the teaching agent makes decisions with access to privileged information, this information is marginalized during imitation learning.
We propose 'Adaptive Insubordination' (ADVISOR) to address this gap.
ADVISOR dynamically weights imitation and reward-based reinforcement learning losses during training, enabling on-the-fly switching between imitation and exploration.
arXiv Detail & Related papers (2020-07-23T17:59:57Z) - Understanding the Role of Training Regimes in Continual Learning [51.32945003239048]
Catastrophic forgetting affects the training of neural networks, limiting their ability to learn multiple tasks sequentially.
We study the effect of dropout, learning rate decay, and batch size, on forming training regimes that widen the tasks' local minima.
arXiv Detail & Related papers (2020-06-12T06:00:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.