Few-Shot Learner Generalizes Across AI-Generated Image Detection
- URL: http://arxiv.org/abs/2501.08763v1
- Date: Wed, 15 Jan 2025 12:33:11 GMT
- Title: Few-Shot Learner Generalizes Across AI-Generated Image Detection
- Authors: Shiyu Wu, Jing Liu, Jing Li, Yequan Wang,
- Abstract summary: Few-Shot Detector (FSD) is a novel AI-generated image detector which learns a specialized metric space to effectively distinguish unseen fake images.
Experiments show FSD state-of-the-art performance by $+7.4%$ average ACC on GenImage dataset.
- Score: 14.069833211684715
- License:
- Abstract: Current fake image detectors trained on large synthetic image datasets perform satisfactorily on limited studied generative models. However, they suffer a notable performance decline over unseen models. Besides, collecting adequate training data from online generative models is often expensive or infeasible. To overcome these issues, we propose Few-Shot Detector (FSD), a novel AI-generated image detector which learns a specialized metric space to effectively distinguish unseen fake images by utilizing very few samples. Experiments show FSD achieves state-of-the-art performance by $+7.4\%$ average ACC on GenImage dataset. More importantly, our method is better capable of capturing the intra-category common features in unseen images without further training.
Related papers
- Self-Supervised Learning for Detecting AI-Generated Faces as Anomalies [58.11545090128854]
We describe an anomaly detection method for AI-generated faces by leveraging self-supervised learning of camera-intrinsic and face-specific features purely from photographic face images.
The success of our method lies in designing a pretext task that trains a feature extractor to rank four ordinal exchangeable image file format (EXIF) tags and classify artificially manipulated face images.
arXiv Detail & Related papers (2025-01-04T06:23:24Z) - A Bias-Free Training Paradigm for More General AI-generated Image Detection [15.421102443599773]
A well-designed forensic detector should detect generator specific artifacts rather than reflect data biases.
We propose B-Free, a bias-free training paradigm, where fake images are generated from real ones.
We show significant improvements in both generalization and robustness over state-of-the-art detectors.
arXiv Detail & Related papers (2024-12-23T15:54:32Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.
In this paper, we investigate how detection performance varies across model backbones, types, and datasets.
We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
We introduce SEMI-TRUTHS, featuring 27,600 real images, 223,400 masks, and 1,472,700 AI-augmented images.
Each augmented image is accompanied by metadata for standardized and targeted evaluation of detector robustness.
Our findings suggest that state-of-the-art detectors exhibit varying sensitivities to the types and degrees of perturbations, data distributions, and augmentation methods used.
arXiv Detail & Related papers (2024-11-12T01:17:27Z) - Zero-Shot Detection of AI-Generated Images [54.01282123570917]
We propose a zero-shot entropy-based detector (ZED) to detect AI-generated images.
Inspired by recent works on machine-generated text detection, our idea is to measure how surprising the image under analysis is compared to a model of real images.
ZED achieves an average improvement of more than 3% over the SoTA in terms of accuracy.
arXiv Detail & Related papers (2024-09-24T08:46:13Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGID is a training-free and model-agnostic method for robust AI-generated image detection.
RIGID significantly outperforms existing trainingbased and training-free detectors.
arXiv Detail & Related papers (2024-05-30T14:49:54Z) - Raising the Bar of AI-generated Image Detection with CLIP [50.345365081177555]
The aim of this work is to explore the potential of pre-trained vision-language models (VLMs) for universal detection of AI-generated images.
We develop a lightweight detection strategy based on CLIP features and study its performance in a wide variety of challenging scenarios.
arXiv Detail & Related papers (2023-11-30T21:11:20Z) - GenImage: A Million-Scale Benchmark for Detecting AI-Generated Image [28.38575401686718]
We introduce the GenImage dataset, which includes over one million pairs of AI-generated fake images and collected real images.
The advantages allow the detectors trained on GenImage to undergo a thorough evaluation and demonstrate strong applicability to diverse images.
We conduct a comprehensive analysis of the dataset and propose two tasks for evaluating the detection method in resembling real-world scenarios.
arXiv Detail & Related papers (2023-06-14T15:21:09Z) - Multiclass non-Adversarial Image Synthesis, with Application to
Classification from Very Small Sample [6.243995448840211]
We present a novel non-adversarial generative method - Clustered Optimization of LAtent space (COLA)
In the full data regime, our method is capable of generating diverse multi-class images with no supervision.
In the small-data regime, where only a small sample of labeled images is available for training with no access to additional unlabeled data, our results surpass state-of-the-art GAN models trained on the same amount of data.
arXiv Detail & Related papers (2020-11-25T18:47:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.