RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection
- URL: http://arxiv.org/abs/2405.20112v1
- Date: Thu, 30 May 2024 14:49:54 GMT
- Title: RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection
- Authors: Zhiyuan He, Pin-Yu Chen, Tsung-Yi Ho,
- Abstract summary: RIGID is a training-free and model-agnostic method for robust AI-generated image detection.
RIGID significantly outperforms existing trainingbased and training-free detectors.
- Score: 60.960988614701414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advances in generative AI models have empowered the creation of highly realistic images with arbitrary content, raising concerns about potential misuse and harm, such as Deepfakes. Current research focuses on training detectors using large datasets of generated images. However, these training-based solutions are often computationally expensive and show limited generalization to unseen generated images. In this paper, we propose a training-free method to distinguish between real and AI-generated images. We first observe that real images are more robust to tiny noise perturbations than AI-generated images in the representation space of vision foundation models. Based on this observation, we propose RIGID, a training-free and model-agnostic method for robust AI-generated image detection. RIGID is a simple yet effective approach that identifies whether an image is AI-generated by comparing the representation similarity between the original and the noise-perturbed counterpart. Our evaluation on a diverse set of AI-generated images and benchmarks shows that RIGID significantly outperforms existing trainingbased and training-free detectors. In particular, the average performance of RIGID exceeds the current best training-free method by more than 25%. Importantly, RIGID exhibits strong generalization across different image generation methods and robustness to image corruptions.
Related papers
- Few-Shot Learner Generalizes Across AI-Generated Image Detection [14.069833211684715]
Few-Shot Detector (FSD) is a novel AI-generated image detector which learns a specialized metric space to effectively distinguish unseen fake images.
Experiments show FSD state-of-the-art performance by $+7.4%$ average ACC on GenImage dataset.
arXiv Detail & Related papers (2025-01-15T12:33:11Z) - Self-Supervised Learning for Detecting AI-Generated Faces as Anomalies [58.11545090128854]
We describe an anomaly detection method for AI-generated faces by leveraging self-supervised learning of camera-intrinsic and face-specific features purely from photographic face images.
The success of our method lies in designing a pretext task that trains a feature extractor to rank four ordinal exchangeable image file format (EXIF) tags and classify artificially manipulated face images.
arXiv Detail & Related papers (2025-01-04T06:23:24Z) - Detecting Discrepancies Between AI-Generated and Natural Images Using Uncertainty [91.64626435585643]
We propose a novel approach for detecting AI-generated images by leveraging predictive uncertainty to mitigate misuse and associated risks.
The motivation arises from the fundamental assumption regarding the distributional discrepancy between natural and AI-generated images.
We propose to leverage large-scale pre-trained models to calculate the uncertainty as the score for detecting AI-generated images.
arXiv Detail & Related papers (2024-12-08T11:32:25Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.
In this paper, we investigate how detection performance varies across model backbones, types, and datasets.
We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - Time Step Generating: A Universal Synthesized Deepfake Image Detector [0.4488895231267077]
We propose a universal synthetic image detector Time Step Generating (TSG)
TSG does not rely on pre-trained models' reconstructing ability, specific datasets, or sampling algorithms.
We test the proposed TSG on the large-scale GenImage benchmark and it achieves significant improvements in both accuracy and generalizability.
arXiv Detail & Related papers (2024-11-17T09:39:50Z) - Zero-Shot Detection of AI-Generated Images [54.01282123570917]
We propose a zero-shot entropy-based detector (ZED) to detect AI-generated images.
Inspired by recent works on machine-generated text detection, our idea is to measure how surprising the image under analysis is compared to a model of real images.
ZED achieves an average improvement of more than 3% over the SoTA in terms of accuracy.
arXiv Detail & Related papers (2024-09-24T08:46:13Z) - A Sanity Check for AI-generated Image Detection [49.08585395873425]
We propose AIDE (AI-generated Image DEtector with Hybrid Features) to detect AI-generated images.
AIDE achieves +3.5% and +4.6% improvements to state-of-the-art methods.
arXiv Detail & Related papers (2024-06-27T17:59:49Z) - Improving Interpretability and Robustness for the Detection of AI-Generated Images [6.116075037154215]
We analyze existing state-of-the-art AIGI detection methods based on frozen CLIP embeddings.
We show how to interpret them, shedding light on how images produced by various AI generators differ from real ones.
arXiv Detail & Related papers (2024-06-21T10:33:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.