論文の概要: Deep learning for temporal super-resolution 4D Flow MRI
- arxiv url: http://arxiv.org/abs/2501.08780v1
- Date: Wed, 15 Jan 2025 13:01:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 15:52:01.307212
- Title: Deep learning for temporal super-resolution 4D Flow MRI
- Title(参考訳): 時空間超解像4次元フローMRIの深部学習
- Authors: Pia Callmer, Mia Bonini, Edward Ferdian, David Nordsletten, Daniel Giese, Alistair A. Young, Alexander Fyrdahl, David Marlevi,
- Abstract要約: 本研究の目的は,時間的超解像4D Flow MRIのための残像ネットワークの実装と評価である。
患者固有のシリコモデル由来の合成4次元フローMRIデータと、in-vivoデータセットを用いてトレーニングおよび試験を行った。
以上の結果から, 時空間超解像4次元フローMRIにおけるデータ駆動型ニューラルネットワークの有用性が示唆された。
- 参考スコア(独自算出の注目度): 34.90138772411514
- License:
- Abstract: 4D Flow Magnetic Resonance Imaging (4D Flow MRI) is a non-invasive technique for volumetric, time-resolved blood flow quantification. However, apparent trade-offs between acquisition time, image noise, and resolution limit clinical applicability. In particular, in regions of highly transient flow, coarse temporal resolution can hinder accurate capture of physiologically relevant flow variations. To overcome these issues, post-processing techniques using deep learning have shown promising results to enhance resolution post-scan using so-called super-resolution networks. However, while super-resolution has been focusing on spatial upsampling, temporal super-resolution remains largely unexplored. The aim of this study was therefore to implement and evaluate a residual network for temporal super-resolution 4D Flow MRI. To achieve this, an existing spatial network (4DFlowNet) was re-designed for temporal upsampling, adapting input dimensions, and optimizing internal layer structures. Training and testing were performed using synthetic 4D Flow MRI data originating from patient-specific in-silico models, as well as using in-vivo datasets. Overall, excellent performance was achieved with input velocities effectively denoised and temporally upsampled, with a mean absolute error (MAE) of 1.0 cm/s in an unseen in-silico setting, outperforming deterministic alternatives (linear interpolation MAE = 2.3 cm/s, sinc interpolation MAE = 2.6 cm/s). Further, the network synthesized high-resolution temporal information from unseen low-resolution in-vivo data, with strong correlation observed at peak flow frames. As such, our results highlight the potential of utilizing data-driven neural networks for temporal super-resolution 4D Flow MRI, enabling high-frame-rate flow quantification without extending acquisition times beyond clinically acceptable limits.
- Abstract(参考訳): 4D Flow Magnetic Resonance Imaging (4D Flow MRI) は、容積的、時間分解型血流定量化のための非侵襲的手法である。
しかし、取得時間、画像ノイズ、解像度の間の明らかなトレードオフは臨床応用性を制限する。
特に、高度に過渡的な流れの地域では、粗い時間分解能は生理学的に関連する流れの変化を正確に捉えるのを妨げる。
これらの課題を克服するため、ディープラーニングを用いた後処理技術は、いわゆる超解像ネットワークを用いてスキャン後の分解能を高めるための有望な結果を示している。
しかし、超解像は空間的アップサンプリングに焦点を合わせてきたが、時間的超解像はほとんど探索されていない。
そこで本研究では,時間的超解像4D Flow MRIのための残像ネットワークの実装と評価を行った。
これを実現するために、既存の空間ネットワーク(4DFlowNet)を時間的アップサンプリング、入力次元の適応、内部層構造の最適化のために再設計した。
患者固有のシリコモデル由来の合成4次元フローMRIデータと、in-vivoデータセットを用いてトレーニングおよび試験を行った。
全体としては、入力速度を効果的に分解し、時間的に増幅し、平均絶対誤差(MAE)が1.0 cm/sであり、決定論的代替(線形補間MAE = 2.3 cm/s、シンク補間MAE = 2.6 cm/s)よりも優れた性能を示した。
さらに、ピークフローフレームで強い相関が観測され、目に見えない低解像度インビボデータから高分解能時間情報を合成した。
そこで本研究では, 時間的超解像4次元フローMRIにデータ駆動ニューラルネットワークを応用し, 臨床的に許容範囲を超えて取得時間を延ばすことなく, 高フレームレートフローの定量化を可能にする可能性を強調した。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Implicit neural representations for unsupervised super-resolution and
denoising of 4D flow MRI [1.207455285737927]
大動脈内3方向速度の時間変化に対するSIRENの4次元フローMRIによる検討を行った。
本手法をボクセル座標で訓練し, 合成計測と実際の4次元フローMRIによるアプローチをベンチマークした。
我々の最適化されたSIRENアーキテクチャは最先端技術より優れており、臨床データから解離・超解離速度場を生成する。
論文 参考訳(メタデータ) (2023-02-24T08:42:04Z) - Coarse-Super-Resolution-Fine Network (CoSF-Net): A Unified End-to-End
Neural Network for 4D-MRI with Simultaneous Motion Estimation and
Super-Resolution [21.75329634476446]
我々は,高分解能ネットワーク(CoSF-Net)と呼ばれる新しいディープラーニングフレームワークを開発した。
既存のネットワークと最先端の3つのアルゴリズムと比較して、CoSF-Netは4D-MRIの呼吸相間の変形可能なベクトル場を正確に推定するだけでなく、解剖学的特徴を増強した4D-MRIの空間分解能も同時に改善した。
論文 参考訳(メタデータ) (2022-11-21T01:42:51Z) - DDoS-UNet: Incorporating temporal information using Dynamic Dual-channel
UNet for enhancing super-resolution of dynamic MRI [0.27998963147546135]
磁気共鳴イメージング(MRI)は、有害な電離放射線を使わずに、高い空間分解能と優れた軟質コントラストを提供する。
時間分解能の高いMRIでは空間分解能が制限される。
このトレードオフを緩和するために、ディープラーニングに基づく超解像アプローチが提案されている。
本研究は,空間的関係と時間的関係の両方を学習しようとする深層学習モデルを作成することで,この問題に対処する。
論文 参考訳(メタデータ) (2022-02-10T22:20:58Z) - Non-invasive hemodynamic analysis for aortic regurgitation using
computational fluid dynamics and deep learning [2.150638298922378]
心臓血管血行動態の変化は大動脈逆流(AR)の発生と密接に関連している
4次元(4次元)流磁気共鳴画像(MRI)を用いて非侵襲的に測定できる。
しかし、解像度の低さは、しばしば4次元フローMRIと複雑なAR血行動態の限界によって生じる。
これを解決するために、計算流体力学シミュレーションを合成された4次元フローMRIデータに変換し、様々なニューラルネットワークのトレーニングに使用した。
論文 参考訳(メタデータ) (2021-11-23T05:19:42Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
SISR(Single Image Super-Resolution)は、1つの低解像度入力画像から高解像度(HR)の詳細を得る技術である。
ディープラーニングは、大きなデータセットから事前知識を抽出し、低解像度の画像から優れたMRI画像を生成します。
論文 参考訳(メタデータ) (2021-02-25T14:52:23Z) - 4D Spatio-Temporal Convolutional Networks for Object Position Estimation
in OCT Volumes [69.62333053044712]
3次元畳み込みニューラルネットワーク(CNN)は、単一のOCT画像を用いたマーカーオブジェクトのポーズ推定に有望な性能を示した。
我々は3次元CNNを4次元時間CNNに拡張し、マーカーオブジェクト追跡のための追加の時間情報の影響を評価する。
論文 参考訳(メタデータ) (2020-07-02T12:02:20Z) - 4DFlowNet: Super-Resolution 4D Flow MRI using Deep Learning and
Computational Fluid Dynamics [0.0795451369160375]
画像解像度の上昇は、特に異常な血流を持つ患者において、より正確で、血流のより良い評価を可能にする。
計算流体力学シミュレーションを用いて, 合成4次元フローMRIデータを生成する。
我々の新しい4DFlowNetネットワークは, この合成4Dフローデータをトレーニングし, 2。
論文 参考訳(メタデータ) (2020-04-15T12:16:52Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z) - Microvascular Dynamics from 4D Microscopy Using Temporal Segmentation [81.30750944868142]
経時的に脳血流量の変化を追跡でき, ピアル表面に向かって伝播する自発性動脈拡張を同定できる。
この新たなイメージング機能は、機能的磁気共鳴イメージング(fMRI)を基盤とした血行動態応答関数を特徴付けるための有望なステップである。
論文 参考訳(メタデータ) (2020-01-14T22:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。