論文の概要: RouteNet-Gauss: Hardware-Enhanced Network Modeling with Machine Learning
- arxiv url: http://arxiv.org/abs/2501.08848v1
- Date: Wed, 15 Jan 2025 15:00:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 15:52:55.338230
- Title: RouteNet-Gauss: Hardware-Enhanced Network Modeling with Machine Learning
- Title(参考訳): RouteNet-Gauss: 機械学習によるハードウェア強化ネットワークモデリング
- Authors: Carlos Güemes-Palau, Miquel Ferriol-Galmés, Jordi Paillisse-Vilanova, Albert López-Brescó, Pere Barlet-Ros, Albert Cabellos-Aparicio,
- Abstract要約: 本稿では、これらの課題に対処するために、テストベッドネットワークと機械学習(ML)モデルとの新たな統合であるRouteNet-Gaussを紹介する。
ハードウェアアクセラレータとしてテストベッドを使用することで、RouteNet-Gaussはトレーニングデータセットを高速に生成し、実世界の条件に対する忠実度の高いネットワークシナリオをシミュレートする。
実験結果から,RouteNet-Gaussは予測誤差を最大95%削減し,最新のDES法に比べて推論時間の488倍の高速化を実現していることがわかった。
- 参考スコア(独自算出の注目度): 5.381741076460799
- License:
- Abstract: Network simulation is pivotal in network modeling, assisting with tasks ranging from capacity planning to performance estimation. Traditional approaches such as Discrete Event Simulation (DES) face limitations in terms of computational cost and accuracy. This paper introduces RouteNet-Gauss, a novel integration of a testbed network with a Machine Learning (ML) model to address these challenges. By using the testbed as a hardware accelerator, RouteNet-Gauss generates training datasets rapidly and simulates network scenarios with high fidelity to real-world conditions. Experimental results show that RouteNet-Gauss significantly reduces prediction errors by up to 95% and achieves a 488x speedup in inference time compared to state-of-the-art DES-based methods. RouteNet-Gauss's modular architecture is dynamically constructed based on the specific characteristics of the network scenario, such as topology and routing. This enables it to understand and generalize to different network configurations beyond those seen during training, including networks up to 10x larger. Additionally, it supports Temporal Aggregated Performance Estimation (TAPE), providing configurable temporal granularity and maintaining high accuracy in flow performance metrics. This approach shows promise in improving both simulation efficiency and accuracy, offering a valuable tool for network operators.
- Abstract(参考訳): ネットワークシミュレーションは、キャパシティ計画から性能推定までのタスクを支援するネットワークモデリングにおいて重要である。
離散イベントシミュレーション(DES)のような従来の手法は、計算コストと精度の点で制限に直面している。
本稿では、これらの課題に対処するために、テストベッドネットワークと機械学習(ML)モデルとの新たな統合であるRouteNet-Gaussを紹介する。
ハードウェアアクセラレータとしてテストベッドを使用することで、RouteNet-Gaussはトレーニングデータセットを高速に生成し、実世界の条件に対する忠実度の高いネットワークシナリオをシミュレートする。
実験結果から,RouteNet-Gaussは予測誤差を最大95%削減し,最新のDES法に比べて推論時間の488倍の高速化を実現していることがわかった。
RouteNet-Gaussのモジュラーアーキテクチャはトポロジやルーティングといったネットワークシナリオの特徴に基づいて動的に構築される。
これにより、トレーニング中のネットワークの最大10倍のネットワークを含む、さまざまなネットワーク構成の理解と一般化が可能になる。
さらに、TAPE(Temporal Aggregated Performance Estimation)をサポートし、設定可能な時間的粒度を提供し、フローパフォーマンスメトリクスの高精度を維持する。
このアプローチはシミュレーション効率と精度の両方を改善し、ネットワークオペレーターにとって価値のあるツールを提供する。
関連論文リスト
- NetFlowGen: Leveraging Generative Pre-training for Network Traffic Dynamics [72.95483148058378]
我々は,NetFlowレコードからのトラフィックデータのみを用いて,トラフィックダイナミクスをキャプチャする汎用機械学習モデルを事前学習することを提案する。
ネットワーク特徴表現の統一,未ラベルの大規模トラフィックデータ量からの学習,DDoS攻撃検出における下流タスクのテストといった課題に対処する。
論文 参考訳(メタデータ) (2024-12-30T00:47:49Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - RACH Traffic Prediction in Massive Machine Type Communications [5.416701003120508]
本稿では,ALOHAネットワークにおけるバーストトラフィック予測に適した機械学習ベースのフレームワークを提案する。
我々は,mMTCネットワークから頻繁に収集されたデータを活用することでLSTMネットワークの状態を更新する,新しい低複雑さオンライン予測アルゴリズムを開発した。
本研究では,単一基地局と数千のデバイスを異なるトラフィック発生特性を持つグループに編成したネットワーク上でのフレームワークの性能を評価する。
論文 参考訳(メタデータ) (2024-05-08T17:28:07Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
オートトレインオース (Auto-Train-Once, ATO) は、DNNの計算コストと記憶コストを自動的に削減するために設計された、革新的なネットワークプルーニングアルゴリズムである。
総合的な収束解析と広範な実験を行い,本手法が様々なモデルアーキテクチャにおける最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-03-21T02:33:37Z) - Building a Graph-based Deep Learning network model from captured traffic
traces [4.671648049111933]
技術ネットワークモデルの現状は離散事象シミュレーション(DES)に基づいているか依存している
DESは非常に正確であり、計算コストも高く、並列化も困難であり、高性能ネットワークをシミュレートするには実用的ではない。
我々は,実際のネットワークシナリオの複雑さをより正確に捉えるために,グラフニューラルネットワーク(GNN)ベースのソリューションを提案する。
論文 参考訳(メタデータ) (2023-10-18T11:16:32Z) - RouteNet-Fermi: Network Modeling with Graph Neural Networks [7.227467283378366]
我々は、キューイング理論と同じ目標を共有するカスタムグラフニューラルネットワーク(GNN)モデルであるRouteNet-Fermiを紹介する。
提案モデルでは,ネットワークの遅延,ジッタ,パケット損失を正確に予測する。
実験の結果,RouteNet-Fermi はパケットレベルシミュレータと同様の精度でパケットレベルシミュレータを実現することがわかった。
論文 参考訳(メタデータ) (2022-12-22T23:02:40Z) - RouteNet-Erlang: A Graph Neural Network for Network Performance
Evaluation [5.56275556529722]
本稿では,コンピュータネットワークをモデル化するためのGNNアーキテクチャであるemphRouteNet-Erlangを提案する。
RouteNet-Erlangは複雑なトラフィックモデル、マルチキュースケジューリングポリシー、ルーティングポリシーをサポートし、正確な見積もりを提供する。
RouteNet-Erlangを最先端のQTモデルと比較した結果、すべてのネットワークシナリオにおいてQTよりも優れています。
論文 参考訳(メタデータ) (2022-02-28T17:09:53Z) - Dynamic Slimmable Network [105.74546828182834]
ダイナミックスリム化システム「ダイナミックスリム化ネットワーク(DS-Net)」を開発。
ds-netは,提案するダブルヘッド動的ゲートによる動的推論機能を備えている。
静的圧縮法と最先端の静的および動的モデル圧縮法を一貫して上回っている。
論文 参考訳(メタデータ) (2021-03-24T15:25:20Z) - Applying Graph-based Deep Learning To Realistic Network Scenarios [5.453745629140304]
本稿では,ネットワーク内のパスごとの平均遅延を正確に推定できるグラフベースの新しいディープラーニングモデルを提案する。
提案モデルでは,トレーニングフェーズ中に見つからないトポロジ,ルーティング構成,キュースケジューリングポリシ,トラフィック行列をうまく一般化することができる。
論文 参考訳(メタデータ) (2020-10-13T20:58:59Z) - Toward fast and accurate human pose estimation via soft-gated skip
connections [97.06882200076096]
本稿では,高精度かつ高効率な人間のポーズ推定について述べる。
我々は、最先端技術よりも精度と効率を両立させる文脈において、この設計選択を再分析する。
本モデルでは,MPII と LSP のデータセットから最先端の結果が得られる。
論文 参考訳(メタデータ) (2020-02-25T18:51:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。