論文の概要: RepVideo: Rethinking Cross-Layer Representation for Video Generation
- arxiv url: http://arxiv.org/abs/2501.08994v1
- Date: Wed, 15 Jan 2025 18:20:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 15:52:16.928863
- Title: RepVideo: Rethinking Cross-Layer Representation for Video Generation
- Title(参考訳): RepVideo: ビデオ生成のためのクロスレイア表現の再考
- Authors: Chenyang Si, Weichen Fan, Zhengyao Lv, Ziqi Huang, Yu Qiao, Ziwei Liu,
- Abstract要約: テキスト・ビデオ拡散モデルのための拡張表現フレームワークであるRepVideoを提案する。
近隣層からの機能を蓄積してリッチな表現を形成することで、このアプローチはより安定したセマンティック情報をキャプチャする。
我々の実験は、RepVideoが正確な空間的外観を生成する能力を著しく向上するだけでなく、ビデオ生成における時間的一貫性も向上することを示した。
- 参考スコア(独自算出の注目度): 53.701548524818534
- License:
- Abstract: Video generation has achieved remarkable progress with the introduction of diffusion models, which have significantly improved the quality of generated videos. However, recent research has primarily focused on scaling up model training, while offering limited insights into the direct impact of representations on the video generation process. In this paper, we initially investigate the characteristics of features in intermediate layers, finding substantial variations in attention maps across different layers. These variations lead to unstable semantic representations and contribute to cumulative differences between features, which ultimately reduce the similarity between adjacent frames and negatively affect temporal coherence. To address this, we propose RepVideo, an enhanced representation framework for text-to-video diffusion models. By accumulating features from neighboring layers to form enriched representations, this approach captures more stable semantic information. These enhanced representations are then used as inputs to the attention mechanism, thereby improving semantic expressiveness while ensuring feature consistency across adjacent frames. Extensive experiments demonstrate that our RepVideo not only significantly enhances the ability to generate accurate spatial appearances, such as capturing complex spatial relationships between multiple objects, but also improves temporal consistency in video generation.
- Abstract(参考訳): ビデオ生成は拡散モデルの導入によって著しく進歩し、生成したビデオの品質が大幅に向上した。
しかし、最近の研究では主にモデルトレーニングのスケールアップに焦点が当てられ、ビデオ生成プロセスにおける表現の直接的な影響についての限られた洞察を提供している。
本稿では,まず中間層の特徴について検討し,異なる層にまたがる注意図のかなりのばらつきを見出した。
これらのバリエーションは不安定な意味表現をもたらし、特徴間の累積的な差異に寄与し、最終的には隣接するフレーム間の類似性を減少させ、時間的コヒーレンスに悪影響を及ぼす。
そこで本稿では,テキスト・ビデオ拡散モデルのための拡張表現フレームワークであるRepVideoを提案する。
近隣層からの機能を蓄積してリッチな表現を形成することで、より安定したセマンティック情報をキャプチャする。
これらの拡張表現は、アテンション機構への入力として使用され、隣接するフレーム間の特徴整合性を確保しながら意味表現性を向上させる。
我々のRepVideoは、複数のオブジェクト間の複雑な空間的関係をキャプチャするなど、正確な空間的外観を生成する能力を著しく向上するだけでなく、ビデオ生成における時間的一貫性も向上することを示した。
関連論文リスト
- Optical-Flow Guided Prompt Optimization for Coherent Video Generation [51.430833518070145]
我々は,光フローによる映像生成プロセスをガイドするMotionPromptというフレームワークを提案する。
ランダムフレーム対に適用した訓練された識別器の勾配を用いて,逆サンプリングステップにおける学習可能なトークン埋め込みを最適化する。
提案手法により,生成したコンテンツの忠実さを損なうことなく,自然な動きのダイナミクスを忠実に反映した視覚的コヒーレントな映像シーケンスを生成することができる。
論文 参考訳(メタデータ) (2024-11-23T12:26:52Z) - BroadWay: Boost Your Text-to-Video Generation Model in a Training-free Way [72.1984861448374]
そこで,BroadWayを提案する。BroadWayは,追加パラメータやメモリ増設,サンプリング時間を追加することなく,テキスト・ビデオ・ジェネレーションの品質を向上するためのトレーニング不要な手法である。
具体的には、BroadWayは2つの主要コンポーネントから構成される: 1) 時間的自己誘導は、様々なデコーダブロック間の時間的注意マップ間の格差を減らし、生成されたビデオの構造的妥当性と時間的一貫性を改善する。
論文 参考訳(メタデータ) (2024-10-08T17:56:33Z) - Rethinking Video Segmentation with Masked Video Consistency: Did the Model Learn as Intended? [22.191260650245443]
ビデオセグメント化は、ビデオシーケンスを、オブジェクトやフレーム内の関心領域に基づいて意味のあるセグメントに分割することを目的としている。
現在のビデオセグメンテーションモデルは、しばしば画像セグメンテーション技術から派生している。
本研究では,空間的・時間的特徴集約を向上する学習戦略であるMasked Video Consistencyを提案する。
論文 参考訳(メタデータ) (2024-08-20T08:08:32Z) - FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation [85.29772293776395]
フレーム間対応とフレーム間対応のFRESCOを導入し,より堅牢な時空間制約を確立する。
この拡張により、フレーム間で意味的に類似したコンテンツのより一貫性のある変換が可能になる。
提案手法では,入力ビデオと高空間時間整合性を実現するために,特徴の明示的な更新を行う。
論文 参考訳(メタデータ) (2024-03-19T17:59:18Z) - APLA: Additional Perturbation for Latent Noise with Adversarial Training Enables Consistency [9.07931905323022]
拡散モデルに基づく新しいテキスト・ツー・ビデオ(T2V)生成ネットワーク構造を提案する。
提案手法では,1本の動画を入力として必要とせず,事前学習した安定拡散ネットワーク上に構築する。
我々は、変換器と畳み込みのハイブリッドアーキテクチャを活用して、時間的複雑さを補償し、ビデオ内の異なるフレーム間の一貫性を向上させる。
論文 参考訳(メタデータ) (2023-08-24T07:11:00Z) - Swap Attention in Spatiotemporal Diffusions for Text-to-Video Generation [55.36617538438858]
本研究では,空間的知覚と時間的知覚の相互作用を強化する新しいアプローチを提案する。
我々はHD-VG-130Mという大規模かつオープンソースのビデオデータセットをキュレートする。
論文 参考訳(メタデータ) (2023-05-18T11:06:15Z) - Leveraging Local Temporal Information for Multimodal Scene
Classification [9.548744259567837]
映像シーン分類モデルは、映像の空間的(ピクセル的に)および時間的(フレーム的に)特性を効果的に捉えなければならない。
トークン列が与えられた個々のトークンに対して文脈化された表現を得るように設計された自己注意型トランスフォーマーモデルは、多くのコンピュータビジョンタスクで人気が高まっている。
本稿では,ビデオフレーム間の局所的・大域的時間的関係を利用して,各フレームの文脈的表現をより良くする自己注意ブロックを提案する。
論文 参考訳(メタデータ) (2021-10-26T19:58:32Z) - Efficient Modelling Across Time of Human Actions and Interactions [92.39082696657874]
3つの畳み込みニューラルネットワーク(CNND)における現在の固定サイズの時間的カーネルは、入力の時間的変動に対処するために改善できると主張している。
我々は、アーキテクチャの異なるレイヤにまたがる機能の違いを強化することで、アクションのクラス間でどのようにうまく対処できるかを研究する。
提案手法は、いくつかのベンチマークアクション認識データセットで評価され、競合する結果を示す。
論文 参考訳(メタデータ) (2021-10-05T15:39:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。