Multimodal LLMs Can Reason about Aesthetics in Zero-Shot
- URL: http://arxiv.org/abs/2501.09012v2
- Date: Thu, 17 Apr 2025 17:14:09 GMT
- Title: Multimodal LLMs Can Reason about Aesthetics in Zero-Shot
- Authors: Ruixiang Jiang, Changwen Chen,
- Abstract summary: This paper investigates how the reasoning capabilities of Multimodal LLMs can be effectively elicited for aesthetic judgment.<n> MLLMs exhibit a tendency towards hallucinations during aesthetic reasoning, characterized by subjective opinions and unsubstantiated artistic interpretations.<n>Our work paves the way for AI systems that can truly understand, appreciate, and generate artworks that align with the sensible human aesthetic standard.
- Score: 19.5597806965592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid progress of generative art has democratized the creation of visually pleasing imagery. However, achieving genuine artistic impact - the kind that resonates with viewers on a deeper, more meaningful level - requires a sophisticated aesthetic sensibility. This sensibility involves a multi-faceted reasoning process extending beyond mere visual appeal, which is often overlooked by current computational models. This paper pioneers an approach to capture this complex process by investigating how the reasoning capabilities of Multimodal LLMs (MLLMs) can be effectively elicited for aesthetic judgment. Our analysis reveals a critical challenge: MLLMs exhibit a tendency towards hallucinations during aesthetic reasoning, characterized by subjective opinions and unsubstantiated artistic interpretations. We further demonstrate that these limitations can be overcome by employing an evidence-based, objective reasoning process, as substantiated by our proposed baseline, ArtCoT. MLLMs prompted by this principle produce multi-faceted and in-depth aesthetic reasoning that aligns significantly better with human judgment. These findings have direct applications in areas such as AI art tutoring and as reward models for generative art. Ultimately, our work paves the way for AI systems that can truly understand, appreciate, and generate artworks that align with the sensible human aesthetic standard.
Related papers
- Compose Your Aesthetics: Empowering Text-to-Image Models with the Principles of Art [61.28133495240179]
We propose a novel task of aesthetics alignment which seeks to align user-specified aesthetics with the T2I generation output.
Inspired by how artworks provide an invaluable perspective to approach aesthetics, we codify visual aesthetics using the compositional framework artists employ.
We demonstrate that T2I DMs can effectively offer 10 compositional controls through user-specified PoA conditions.
arXiv Detail & Related papers (2025-03-15T06:58:09Z) - CognArtive: Large Language Models for Automating Art Analysis and Decoding Aesthetic Elements [1.0579965347526206]
Art, as a universal language, can be interpreted in diverse ways.
Large Language Models (LLMs) and the availability of Multimodal Large Language Models (MLLMs) raise the question of how these models can be used to assess and interpret artworks.
arXiv Detail & Related papers (2025-02-04T18:08:23Z) - A Cognitive Paradigm Approach to Probe the Perception-Reasoning Interface in VLMs [3.2228025627337864]
This paper introduces a structured evaluation framework using Bongard Problems (BPs) to dissect the perception-reasoning interface in Vision-Language Models (VLMs)
We propose three distinct evaluation paradigms, mirroring human problem-solving strategies.
Our framework provides a valuable diagnostic tool, highlighting the need to enhance visual processing fidelity for achieving more robust and human-like visual intelligence in AI.
arXiv Detail & Related papers (2025-01-23T12:42:42Z) - Imagine while Reasoning in Space: Multimodal Visualization-of-Thought [70.74453180101365]
Chain-of-Thought (CoT) prompting has proven highly effective for enhancing complex reasoning in Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs)
We propose a new reasoning paradigm, Multimodal Visualization-of-Thought (MVoT)
It enables visual thinking in MLLMs by generating image visualizations of their reasoning traces.
arXiv Detail & Related papers (2025-01-13T18:23:57Z) - Advancing Comprehensive Aesthetic Insight with Multi-Scale Text-Guided Self-Supervised Learning [14.405750888492735]
Image Aesthetic Assessment (IAA) is a vital and intricate task that entails analyzing and assessing an image's aesthetic values.
Traditional methods of IAA often concentrate on a single aesthetic task and suffer from inadequate labeled datasets.
We propose a comprehensive aesthetic MLLM capable of nuanced aesthetic insight.
arXiv Detail & Related papers (2024-12-16T16:35:35Z) - MC-Bench: A Benchmark for Multi-Context Visual Grounding in the Era of MLLMs [61.56904387052982]
This paper proposes a new visual grounding task called multi-context visual grounding.
It aims to localize instances of interest across multiple images based on open-ended text prompts.
We benchmark over 20 state-of-the-art MLLMs and foundation models with potential multi-context visual grounding capabilities.
arXiv Detail & Related papers (2024-10-16T07:52:57Z) - Diffusion-Based Visual Art Creation: A Survey and New Perspectives [51.522935314070416]
This survey explores the emerging realm of diffusion-based visual art creation, examining its development from both artistic and technical perspectives.
Our findings reveal how artistic requirements are transformed into technical challenges and highlight the design and application of diffusion-based methods within visual art creation.
We aim to shed light on the mechanisms through which AI systems emulate and possibly, enhance human capacities in artistic perception and creativity.
arXiv Detail & Related papers (2024-08-22T04:49:50Z) - Visualization Literacy of Multimodal Large Language Models: A Comparative Study [12.367399155606162]
multimodal large language models (MLLMs) combine the inherent power of large language models (LLMs) with the renewed capabilities to reason about the multimodal context.
Many recent works in visualization have demonstrated MLLMs' capability to understand and interpret visualization results and explain the content of the visualization to users in natural language.
In this work, we aim to fill the gap by utilizing the concept of visualization literacy to evaluate MLLMs.
arXiv Detail & Related papers (2024-06-24T17:52:16Z) - Aligning Vision Models with Human Aesthetics in Retrieval: Benchmarks and Algorithms [91.19304518033144]
We aim to align vision models with human aesthetic standards in a retrieval system.
We propose a preference-based reinforcement learning method that fine-tunes the vision models to better align the vision models with human aesthetics.
arXiv Detail & Related papers (2024-06-13T17:59:20Z) - AesExpert: Towards Multi-modality Foundation Model for Image Aesthetics Perception [74.11069437400398]
We develop a corpus-rich aesthetic critique database with 21,904 diverse-sourced images and 88K human natural language feedbacks.
We fine-tune the open-sourced general foundation models, achieving multi-modality Aesthetic Expert models, dubbed AesExpert.
Experiments demonstrate that the proposed AesExpert models deliver significantly better aesthetic perception performances than the state-of-the-art MLLMs.
arXiv Detail & Related papers (2024-04-15T09:56:20Z) - AesBench: An Expert Benchmark for Multimodal Large Language Models on
Image Aesthetics Perception [64.25808552299905]
AesBench is an expert benchmark aiming to comprehensively evaluate the aesthetic perception capacities of MLLMs.
We construct an Expert-labeled Aesthetics Perception Database (EAPD), which features diversified image contents and high-quality annotations provided by professional aesthetic experts.
We propose a set of integrative criteria to measure the aesthetic perception abilities of MLLMs from four perspectives, including Perception (AesP), Empathy (AesE), Assessment (AesA) and Interpretation (AesI)
arXiv Detail & Related papers (2024-01-16T10:58:07Z) - A Survey on Multimodal Large Language Models [71.63375558033364]
Multimodal Large Language Model (MLLM) represented by GPT-4V has been a new rising research hotspot.<n>This paper aims to trace and summarize the recent progress of MLLMs.
arXiv Detail & Related papers (2023-06-23T15:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.