論文の概要: Pseudolabel guided pixels contrast for domain adaptive semantic segmentation
- arxiv url: http://arxiv.org/abs/2501.09040v1
- Date: Wed, 15 Jan 2025 03:25:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:11:15.753682
- Title: Pseudolabel guided pixels contrast for domain adaptive semantic segmentation
- Title(参考訳): ドメイン適応型セマンティックセマンティックセグメンテーションのためのPseudolabelガイド画素コントラスト
- Authors: Jianzi Xiang, Cailu Wan, Zhu Cao,
- Abstract要約: セマンティックセグメンテーションのための教師なしドメイン適応(UDA)は、ラベル付き仮想データを使用してモデルをトレーニングし、ラベルなしで実際のデータに適応するテクニックである。
近年のいくつかの研究は、このテクニックを支援するために、自己教師付き学習の強力な方法であるコントラスト学習を使用している。
Pseudo-label Guided Pixel Contrast (PGPC) と呼ばれる新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.9831489366502301
- License:
- Abstract: Semantic segmentation is essential for comprehending images, but the process necessitates a substantial amount of detailed annotations at the pixel level. Acquiring such annotations can be costly in the real-world. Unsupervised domain adaptation (UDA) for semantic segmentation is a technique that uses virtual data with labels to train a model and adapts it to real data without labels. Some recent works use contrastive learning, which is a powerful method for self-supervised learning, to help with this technique. However, these works do not take into account the diversity of features within each class when using contrastive learning, which leads to errors in class prediction. We analyze the limitations of these works and propose a novel framework called Pseudo-label Guided Pixel Contrast (PGPC), which overcomes the disadvantages of previous methods. We also investigate how to use more information from target images without adding noise from pseudo-labels. We test our method on two standard UDA benchmarks and show that it outperforms existing methods. Specifically, we achieve relative improvements of 5.1% mIoU and 4.6% mIoU on the Grand Theft Auto V (GTA5) to Cityscapes and SYNTHIA to Cityscapes tasks based on DAFormer, respectively. Furthermore, our approach can enhance the performance of other UDA approaches without increasing model complexity. Code is available at https://github.com/embar111/pgpc
- Abstract(参考訳): 画像のセグメンテーションにはセマンティックセグメンテーションが不可欠であるが、このプロセスはピクセルレベルで大量の詳細なアノテーションを必要とする。
このようなアノテーションの取得は、現実世界ではコストがかかる可能性がある。
セマンティックセグメンテーションのための教師なしドメイン適応(UDA)は、ラベル付き仮想データを使用してモデルをトレーニングし、ラベルなしで実際のデータに適応するテクニックである。
近年のいくつかの研究は、このテクニックを支援するために、自己教師付き学習の強力な方法であるコントラスト学習を使用している。
しかしながら、これらの研究は、クラス予測の誤りにつながるコントラスト学習を使用する場合、各クラス内の機能の多様性を考慮していない。
我々はこれらの研究の限界を分析し、従来の手法の欠点を克服したPseudo-label Guided Pixel Contrast (PGPC) と呼ばれる新しいフレームワークを提案する。
また、擬似ラベルのノイズを加えることなく、ターゲット画像からより多くの情報を利用する方法についても検討する。
提案手法を2つの標準UDAベンチマークで検証し,既存の手法よりも優れていることを示す。
具体的には,5.1% mIoUと4.6% mIoUをGTA5(Grand Theft Auto V)からCityscapesへ,SynTHIAをDAFormerからCityscapesへ,それぞれ相対的に改善した。
さらに,本手法はモデル複雑性を増大させることなく,他のUDA手法の性能を向上させることができる。
コードはhttps://github.com/embar111/pgpcで入手できる。
関連論文リスト
- C^2DA: Contrastive and Context-aware Domain Adaptive Semantic Segmentation [11.721696305235767]
教師なしドメイン適応セマンティックセマンティックセグメンテーション(UDA-SS)は、ソースドメインデータ上でモデルをトレーニングし、ターゲットドメインデータの予測にモデルを適応させることを目的としている。
既存のUDA-SSメソッドの多くは、データシフト問題を緩和するためにドメイン間知識のみに焦点を当てている。
ドメイン内知識とコンテキスト認識知識の両方を学習する UDA-SS フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-10T15:51:35Z) - Unsupervised Domain Adaptation for Semantic Segmentation with Pseudo
Label Self-Refinement [9.69089112870202]
擬似ラベルのオンライン精錬のための補助的擬似ラベル精錬ネットワーク(PRN)を提案する。
3つの異なるドメインシフトを持つベンチマークデータセットに対する我々のアプローチを評価する。
論文 参考訳(メタデータ) (2023-10-25T20:31:07Z) - Dense FixMatch: a simple semi-supervised learning method for pixel-wise
prediction tasks [68.36996813591425]
Dense FixMatchは,高密度かつ構造化された予測タスクのオンライン半教師付き学習のための簡易な手法である。
我々は、擬似ラベルにマッチング操作を追加することにより、画像分類を超えた半教師付き学習問題にFixMatchの適用を可能にする。
Dense FixMatchは、ラベル付きデータのみを使用して教師付き学習と比較すると、結果を著しく改善し、ラベル付きサンプルの1/4でそのパフォーマンスに近づいた。
論文 参考訳(メタデータ) (2022-10-18T15:02:51Z) - CLUDA : Contrastive Learning in Unsupervised Domain Adaptation for
Semantic Segmentation [3.4123736336071864]
CLUDAは、意味的セグメンテーションのための教師なしドメイン適応(UDA)を実行するための単純だが斬新な方法である。
エンコーダから多レベル融合特徴写像を抽出し,異なるクラスと異なるドメインに対してコントラストロスを適用した。
GTA $rightarrow$ Cityscapes (74.4 mIOU, +0.6) と Synthia $rightarrow$ Cityscapes (67.2 mIOU, +1.4) のデータセットで最先端の結果を生成する。
論文 参考訳(メタデータ) (2022-08-27T05:13:14Z) - SePiCo: Semantic-Guided Pixel Contrast for Domain Adaptive Semantic
Segmentation [52.62441404064957]
ドメイン適応セマンティックセグメンテーションは、ラベル付きソースドメインでトレーニングされたモデルを利用することで、ラベル付きターゲットドメイン上で満足のいく密度の予測を試みる。
多くの手法は、ノイズの多い擬似ラベルを緩和する傾向があるが、類似のセマンティックな概念を持つクロスドメインピクセル間の固有の接続を無視する。
本稿では,個々の画素のセマンティックな概念を強調する一段階適応フレームワークSePiCoを提案する。
論文 参考訳(メタデータ) (2022-04-19T11:16:29Z) - AugNet: End-to-End Unsupervised Visual Representation Learning with
Image Augmentation [3.6790362352712873]
我々は、未ラベル画像の集合から画像特徴を学習するための新しいディープラーニングトレーニングパラダイムであるAugNetを提案する。
実験により,低次元空間における画像の表現が可能であることを実証した。
多くのディープラーニングベースの画像検索アルゴリズムとは異なり、我々のアプローチは外部アノテーション付きデータセットへのアクセスを必要としない。
論文 参考訳(メタデータ) (2021-06-11T09:02:30Z) - Semi-Supervised Domain Adaptation with Prototypical Alignment and
Consistency Learning [86.6929930921905]
本稿では,いくつかの対象サンプルがラベル付けされていれば,ドメインシフトに対処するのにどの程度役立つか検討する。
ランドマークの可能性を最大限に追求するために、ランドマークから各クラスのターゲットプロトタイプを計算するプロトタイプアライメント(PA)モジュールを組み込んでいます。
具体的には,ラベル付き画像に深刻な摂動を生じさせ,PAを非自明にし,モデル一般化性を促進する。
論文 参考訳(メタデータ) (2021-04-19T08:46:08Z) - Dense Contrastive Learning for Self-Supervised Visual Pre-Training [102.15325936477362]
入力画像の2つのビュー間の画素レベルでの差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分)を最適化することにより自己教師学習を実現する。
ベースライン法であるMoCo-v2と比較すると,計算オーバーヘッドは1%遅かった。
論文 参考訳(メタデータ) (2020-11-18T08:42:32Z) - Reducing the Annotation Effort for Video Object Segmentation Datasets [50.893073670389164]
ピクセルマスクでフレームを密にラベル付けしても 大規模なデータセットにはスケールしない
我々は、より安価なバウンディングボックスアノテーションからピクセルレベルで擬似ラベルを自動生成するために、深層畳み込みネットワークを使用します。
我々は新しいTAO-VOSベンチマークを取得し、www.vision.rwth-aachen.de/page/taovosで公開している。
論文 参考訳(メタデータ) (2020-11-02T17:34:45Z) - Efficient Full Image Interactive Segmentation by Leveraging Within-image
Appearance Similarity [39.17599924322882]
インタラクティブなフルイメージセマンティックセマンティックセグメンテーションのための新しいアプローチを提案する。
ラベル付き画素からラベルなしピクセルへの伝搬は必ずしもクラス固有の知識を必要としない。
この観測に基づいて,複数のクラスから画素ラベルを共同で伝播する手法を提案する。
論文 参考訳(メタデータ) (2020-07-16T08:21:59Z) - SCAN: Learning to Classify Images without Labels [73.69513783788622]
機能学習とクラスタリングを分離する2段階のアプローチを提唱する。
表現学習からの自己教師型タスクを用いて意味論的意味のある特徴を得る。
我々は、ImageNet上で有望な結果を得、低データ体制下では、いくつかの半教師付き学習方法より優れています。
論文 参考訳(メタデータ) (2020-05-25T18:12:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。