Average-Reward Reinforcement Learning with Entropy Regularization
- URL: http://arxiv.org/abs/2501.09080v1
- Date: Wed, 15 Jan 2025 19:00:46 GMT
- Title: Average-Reward Reinforcement Learning with Entropy Regularization
- Authors: Jacob Adamczyk, Volodymyr Makarenko, Stas Tiomkin, Rahul V. Kulkarni,
- Abstract summary: We develop algorithms for solving entropy-regularized average-reward RL problems with function.
We experimentally validate our method, comparing it with existing algorithms on standard benchmarks for RL.
- Score: 4.8748194765816955
- License:
- Abstract: The average-reward formulation of reinforcement learning (RL) has drawn increased interest in recent years due to its ability to solve temporally-extended problems without discounting. Independently, RL algorithms have benefited from entropy-regularization: an approach used to make the optimal policy stochastic, thereby more robust to noise. Despite the distinct benefits of the two approaches, the combination of entropy regularization with an average-reward objective is not well-studied in the literature and there has been limited development of algorithms for this setting. To address this gap in the field, we develop algorithms for solving entropy-regularized average-reward RL problems with function approximation. We experimentally validate our method, comparing it with existing algorithms on standard benchmarks for RL.
Related papers
- EVAL: EigenVector-based Average-reward Learning [4.8748194765816955]
We develop approaches based on function approximation by neural networks.
We show how our algorithm can also solve the average-reward RL problem without entropy-regularization.
arXiv Detail & Related papers (2025-01-15T19:00:45Z) - Surpassing legacy approaches to PWR core reload optimization with single-objective Reinforcement learning [0.0]
We have developed methods based on Deep Reinforcement Learning (DRL) for both single- and multi-objective optimization.
In this paper, we demonstrate the advantage of our RL-based approach, specifically using Proximal Policy Optimization (PPO)
PPO adapts its search capability via a policy with learnable weights, allowing it to function as both a global and local search method.
arXiv Detail & Related papers (2024-02-16T19:35:58Z) - PARL: A Unified Framework for Policy Alignment in Reinforcement Learning from Human Feedback [106.63518036538163]
We present a novel unified bilevel optimization-based framework, textsfPARL, formulated to address the recently highlighted critical issue of policy alignment in reinforcement learning.
Our framework addressed these concerns by explicitly parameterizing the distribution of the upper alignment objective (reward design) by the lower optimal variable.
Our empirical results substantiate that the proposed textsfPARL can address the alignment concerns in RL by showing significant improvements.
arXiv Detail & Related papers (2023-08-03T18:03:44Z) - ACPO: A Policy Optimization Algorithm for Average MDPs with Constraints [36.16736392624796]
We introduce a new policy optimization with function approximation algorithm for constrained MDPs with the average criterion.
We develop basic sensitivity theory for average CMDPs, and then use the corresponding bounds in the design of the algorithm.
We show its superior empirical performance when compared to other state-of-the-art algorithms adapted for the ACMDPs.
arXiv Detail & Related papers (2023-02-02T00:23:36Z) - Offline Policy Optimization in RL with Variance Regularizaton [142.87345258222942]
We propose variance regularization for offline RL algorithms, using stationary distribution corrections.
We show that by using Fenchel duality, we can avoid double sampling issues for computing the gradient of the variance regularizer.
The proposed algorithm for offline variance regularization (OVAR) can be used to augment any existing offline policy optimization algorithms.
arXiv Detail & Related papers (2022-12-29T18:25:01Z) - Instance-Dependent Confidence and Early Stopping for Reinforcement
Learning [99.57168572237421]
Various algorithms for reinforcement learning (RL) exhibit dramatic variation in their convergence rates as a function of problem structure.
This research provides guarantees that explain textitex post the performance differences observed.
A natural next step is to convert these theoretical guarantees into guidelines that are useful in practice.
arXiv Detail & Related papers (2022-01-21T04:25:35Z) - Learning Sampling Policy for Faster Derivative Free Optimization [100.27518340593284]
We propose a new reinforcement learning based ZO algorithm (ZO-RL) with learning the sampling policy for generating the perturbations in ZO optimization instead of using random sampling.
Our results show that our ZO-RL algorithm can effectively reduce the variances of ZO gradient by learning a sampling policy, and converge faster than existing ZO algorithms in different scenarios.
arXiv Detail & Related papers (2021-04-09T14:50:59Z) - Logistic Q-Learning [87.00813469969167]
We propose a new reinforcement learning algorithm derived from a regularized linear-programming formulation of optimal control in MDPs.
The main feature of our algorithm is a convex loss function for policy evaluation that serves as a theoretically sound alternative to the widely used squared Bellman error.
arXiv Detail & Related papers (2020-10-21T17:14:31Z) - Variance-Reduced Off-Policy Memory-Efficient Policy Search [61.23789485979057]
Off-policy policy optimization is a challenging problem in reinforcement learning.
Off-policy algorithms are memory-efficient and capable of learning from off-policy samples.
arXiv Detail & Related papers (2020-09-14T16:22:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.