Pseudo-real quantum fields
- URL: http://arxiv.org/abs/2501.09111v1
- Date: Wed, 15 Jan 2025 19:46:16 GMT
- Title: Pseudo-real quantum fields
- Authors: Maxim N. Chernodub, Peter Millington, Esra Sablevice,
- Abstract summary: We show that the concept of pseudo-reality for complex numbers provides a unifying framework for two approaches to quantum field theories.
The pseudo-reality condition for bosonic fields resolves a long-standing problem with the formulation of gauge theories involving pseudo-Hermitian currents.
Results contribute significantly to the ongoing development of the first-principles construction of pseudo-Hermitian quantum field theories.
- Score: 0.0
- License:
- Abstract: We introduce the concept of pseudo-reality for complex numbers. We show that this concept, applied to quantum fields, provides a unifying framework for two distinct approaches to pseudo-Hermitian quantum field theories. The first approach stems from analytically continuing Hermitian theories into the complex plane, while the second is based on constructing them from first principles. The pseudo-reality condition for bosonic fields resolves a long-standing problem with the formulation of gauge theories involving pseudo-Hermitian currents, sheds new light on the resolution of the so-called Hermiticity Puzzle, and leads to a consistent minimal coupling of pseudo-Hermitian quantum field theories to gravity. These results contribute significantly to the ongoing development of the first-principles construction of pseudo-Hermitian quantum field theories, including their formulation in curved spacetimes.
Related papers
- Poincaré symmetries and representations in pseudo-Hermitian quantum field theory [0.0]
This paper explores quantum field theories with pseudo-Hermitian Hamiltonians.
PT-symmetric Hamiltonians serve as a special case.
We extend the Poincar'e algebra to include non-Hermitian generators.
arXiv Detail & Related papers (2023-07-31T16:17:20Z) - Genuine multipartite entanglement and quantum coherence in an
electron-positron system: Relativistic covariance [117.44028458220427]
We analyze the behavior of both genuine multipartite entanglement and quantum coherence under Lorentz boosts.
A given combination of these quantum resources is shown to form a Lorentz invariant.
arXiv Detail & Related papers (2021-11-26T17:22:59Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Perturbation Theory in the Complex Plane: Exceptional Points and Where
to Find Them [0.0]
We observe that the physics of a quantum system is intimately connected to the position of complex-valued energy singularities.
We highlight work on the convergence behaviour of perturbative series obtained within Moller--Plesset perturbation theory.
arXiv Detail & Related papers (2020-12-07T13:42:40Z) - Quantum simulation of gauge theory via orbifold lattice [47.28069960496992]
We propose a new framework for simulating $textU(k)$ Yang-Mills theory on a universal quantum computer.
We discuss the application of our constructions to computing static properties and real-time dynamics of Yang-Mills theories.
arXiv Detail & Related papers (2020-11-12T18:49:11Z) - Entanglement and Complexity of Purification in (1+1)-dimensional free
Conformal Field Theories [55.53519491066413]
We find pure states in an enlarged Hilbert space that encode the mixed state of a quantum field theory as a partial trace.
We analyze these quantities for two intervals in the vacuum of free bosonic and Ising conformal field theories.
arXiv Detail & Related papers (2020-09-24T18:00:13Z) - Quantum Polar Duality and the Symplectic Camel: a Geometric Approach to
Quantization [0.0]
We study the notion of quantum polarity, which is a kind of geometric Fourier transform between sets of positions and sets of momenta.
We show that quantum polarity allows solving the Pauli reconstruction problem for Gaussian wavefunctions.
We discuss the Hardy uncertainty principle and the less-known Donoho--Stark principle from the point of view of quantum polarity.
arXiv Detail & Related papers (2020-09-22T16:55:28Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Classical-quantum correspondence for two-level pseudo-Hermitian systems [0.0]
We show that the presence of a complex external field can be described by a pseudo-Hermitian Hamiltonian.
We construct a covariant quantization scheme which maps canonically related pseudoclassical theories to unitarily equivalent quantum realizations.
arXiv Detail & Related papers (2020-07-03T18:00:07Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.