論文の概要: Large Language Model is Secretly a Protein Sequence Optimizer
- arxiv url: http://arxiv.org/abs/2501.09274v2
- Date: Fri, 17 Jan 2025 15:22:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 14:00:12.796725
- Title: Large Language Model is Secretly a Protein Sequence Optimizer
- Title(参考訳): タンパク質配列最適化のための大規模言語モデル
- Authors: Yinkai Wang, Jiaxing He, Yuanqi Du, Xiaohui Chen, Jianan Canal Li, Li-Ping Liu, Xiaolin Xu, Soha Hassoun,
- Abstract要約: 本研究では,与えられた野生型配列から,高い適合度を持つタンパク質配列を見つけることを目的としたタンパク質配列工学的問題を考える。
大規模言語モデル(LLM)は、大量のテキストで訓練されているにもかかわらず、秘密裏にタンパク質配列であることを示す。
- 参考スコア(独自算出の注目度): 24.55348363931866
- License:
- Abstract: We consider the protein sequence engineering problem, which aims to find protein sequences with high fitness levels, starting from a given wild-type sequence. Directed evolution has been a dominating paradigm in this field which has an iterative process to generate variants and select via experimental feedback. We demonstrate large language models (LLMs), despite being trained on massive texts, are secretly protein sequence optimizers. With a directed evolutionary method, LLM can perform protein engineering through Pareto and experiment-budget constrained optimization, demonstrating success on both synthetic and experimental fitness landscapes.
- Abstract(参考訳): 本研究では,与えられた野生型配列から,高い適合度を持つタンパク質配列を見つけることを目的としたタンパク質配列工学的問題を考える。
方向性進化はこの分野で支配的なパラダイムであり、変種を生成し、実験的なフィードバックを通じて選択する反復的なプロセスを持っている。
大規模言語モデル (LLM) は、大量のテキストで訓練されているにもかかわらず、秘密裏にタンパク質配列オプティマイザであることを示す。
誘導進化法により、LLMはパレートと実験予算の制約された最適化を通じてタンパク質工学を行い、合成と実験の両方のフィットネスランドスケープで成功を示すことができる。
関連論文リスト
- SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
タンパク質基盤モデルのための新しい事前学習戦略を導入する。
アミノ酸残基間の相互作用を強調し、短距離および長距離の共進化的特徴の抽出を強化する。
大規模タンパク質配列データセットを用いて学習し,より優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-10-31T15:22:03Z) - Structure Language Models for Protein Conformation Generation [66.42864253026053]
伝統的な物理学に基づくシミュレーション手法は、しばしばサンプリング平衡整合に苦しむ。
深い生成モデルは、より効率的な代替としてタンパク質のコンホメーションを生成することを約束している。
本稿では,効率的なタンパク質コンホメーション生成のための新しいフレームワークとして構造言語モデリングを紹介する。
論文 参考訳(メタデータ) (2024-10-24T03:38:51Z) - Reinforcement Learning for Sequence Design Leveraging Protein Language Models [14.477268882311991]
本稿では,タンパク質言語モデル(PLM)を報酬関数として利用し,新たな配列を生成することを提案する。
我々はRLベースのアプローチをベンチマークするために、様々なシーケンス長に関する広範な実験を行う。
生物学的妥当性とタンパク質の多様性に関する総合的な評価を行った。
論文 参考訳(メタデータ) (2024-07-03T14:31:36Z) - xTrimoPGLM: Unified 100B-Scale Pre-trained Transformer for Deciphering the Language of Protein [74.64101864289572]
本稿では,タンパク質の理解と生成を同時に行うために,統一されたタンパク質言語モデル xTrimoPGLM を提案する。
xTrimoPGLMは、4つのカテゴリにわたる18のタンパク質理解ベンチマークにおいて、他の高度なベースラインを著しく上回っている。
また、自然の原理に従ってデノボタンパク質配列を生成でき、微調整を監督した後にプログラム可能な生成を行うことができる。
論文 参考訳(メタデータ) (2024-01-11T15:03:17Z) - Efficiently Predicting Protein Stability Changes Upon Single-point
Mutation with Large Language Models [51.57843608615827]
タンパク質の熱安定性を正確に予測する能力は、様々なサブフィールドや生化学への応用において重要である。
タンパク質配列と構造的特徴を統合したESMによる効率的なアプローチを導入し, 単一点突然変異によるタンパク質の熱安定性変化を予測する。
論文 参考訳(メタデータ) (2023-12-07T03:25:49Z) - ProtFIM: Fill-in-Middle Protein Sequence Design via Protein Language
Models [0.0]
現実世界のタンパク質工学では、タンパク質配列の中央にあるアミノ酸が他の残基を維持しながら最適化されることが多い。
タンパク質言語モデル(pLM)はタンパク質配列設計のための有望なツールである。
ProtFIMとよばれる中間変換によって訓練された言語モデルは、タンパク質工学により適していることを示す。
論文 参考訳(メタデータ) (2023-03-29T04:35:50Z) - Protein Sequence Design with Batch Bayesian Optimisation [0.0]
タンパク質配列設計は、有用な生物学的機能を持つ新規タンパク質の発見を目的とした、タンパク質工学における挑戦的な問題である。
有向進化は、実験室環境における進化のサイクルを模倣し、反復的プロトコルを実行する、タンパク質配列設計のための広く使われているアプローチである。
本稿では,タンパク質配列設計のための最適化手法であるBatch Bayesian Optimization (Batch BO) に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2023-03-18T14:53:20Z) - Plug & Play Directed Evolution of Proteins with Gradient-based Discrete
MCMC [1.0499611180329804]
機械学習ベースのタンパク質工学の長年の目標は、新しい突然変異の発見を加速することである。
本稿では,シリコにおけるタンパク質の進化のためのサンプリングフレームワークについて紹介する。
これらのモデルを構成することで、未知の突然変異を評価し、機能的タンパク質を含む可能性のある配列空間の領域を探索する能力を向上させることを目指している。
論文 参考訳(メタデータ) (2022-12-20T00:26:23Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z) - ODBO: Bayesian Optimization with Search Space Prescreening for Directed Protein Evolution [18.726398852721204]
タンパク質指向進化のための効率的で実験的な設計指向のクローズドループ最適化フレームワークを提案する。
ODBOは、新しい低次元タンパク質エンコーディング戦略と、外乱検出による検索空間事前スクリーニングによって強化されたベイズ最適化を組み合わせている。
本研究は, タンパク質指向進化実験を4回実施し, 興味のある変異を見出すためのフレームワークの能力を実証した。
論文 参考訳(メタデータ) (2022-05-19T13:21:31Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
本研究では,データ駆動型生成ネットワークを用いたタンパク質構造最適化手法を提案する。
EBM-Foldアプローチは,従来のロゼッタ構造最適化ルーチンと比較して,高品質なデコイを効率よく生成できる。
論文 参考訳(メタデータ) (2021-05-11T03:40:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。