Understanding Mental Health Content on Social Media and Its Effect Towards Suicidal Ideation
- URL: http://arxiv.org/abs/2501.09309v1
- Date: Thu, 16 Jan 2025 05:46:27 GMT
- Title: Understanding Mental Health Content on Social Media and Its Effect Towards Suicidal Ideation
- Authors: Mohaiminul Islam Bhuiyan, Nur Shazwani Kamarudin, Nur Hafieza Ismail,
- Abstract summary: The study details the application of these technologies in analyzing vast amounts of unstructured social media data to detect linguistic patterns.
It evaluates the real-world effectiveness, limitations, and ethical considerations of employing these technologies for suicide prevention.
- Score: 0.0
- License:
- Abstract: This review underscores the critical need for effective strategies to identify and support individuals with suicidal ideation, exploiting technological innovations in ML and DL to further suicide prevention efforts. The study details the application of these technologies in analyzing vast amounts of unstructured social media data to detect linguistic patterns, keywords, phrases, tones, and contextual cues associated with suicidal thoughts. It explores various ML and DL models like SVMs, CNNs, LSTM, neural networks, and their effectiveness in interpreting complex data patterns and emotional nuances within text data. The review discusses the potential of these technologies to serve as a life-saving tool by identifying at-risk individuals through their digital traces. Furthermore, it evaluates the real-world effectiveness, limitations, and ethical considerations of employing these technologies for suicide prevention, stressing the importance of responsible development and usage. The study aims to fill critical knowledge gaps by analyzing recent studies, methodologies, tools, and techniques in this field. It highlights the importance of synthesizing current literature to inform practical tools and suicide prevention efforts, guiding innovation in reliable, ethical systems for early intervention. This research synthesis evaluates the intersection of technology and mental health, advocating for the ethical and responsible application of ML, DL, and NLP to offer life-saving potential worldwide while addressing challenges like generalizability, biases, privacy, and the need for further research to ensure these technologies do not exacerbate existing inequities and harms.
Related papers
- Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
Mental illness is a widespread and debilitating condition with substantial societal and personal costs.
Recent advances in Artificial Intelligence (AI) hold great potential for recognizing and addressing conditions such as depression, anxiety disorder, bipolar disorder, schizophrenia, and post-traumatic stress disorder.
Privacy concerns, including the risk of sensitive data leakage from datasets and trained models, remain a critical barrier to deploying these AI systems in real-world clinical settings.
arXiv Detail & Related papers (2025-02-01T15:10:02Z) - Persuasion with Large Language Models: a Survey [49.86930318312291]
Large Language Models (LLMs) have created new disruptive possibilities for persuasive communication.
In areas such as politics, marketing, public health, e-commerce, and charitable giving, such LLM Systems have already achieved human-level or even super-human persuasiveness.
Our survey suggests that the current and future potential of LLM-based persuasion poses profound ethical and societal risks.
arXiv Detail & Related papers (2024-11-11T10:05:52Z) - SouLLMate: An Application Enhancing Diverse Mental Health Support with Adaptive LLMs, Prompt Engineering, and RAG Techniques [9.146311285410631]
Mental health issues significantly impact individuals' daily lives, yet many do not receive the help they need even with available online resources.
This study aims to provide diverse, accessible, stigma-free, personalized, and real-time mental health support through cutting-edge AI technologies.
arXiv Detail & Related papers (2024-10-17T22:04:32Z) - SouLLMate: An Adaptive LLM-Driven System for Advanced Mental Health Support and Assessment, Based on a Systematic Application Survey [9.146311285410631]
Mental health issues significantly impact individuals' daily lives, yet many do not receive the help they need even with available online resources.
This study aims to provide accessible, stigma-free, personalized, and real-time mental health support through cutting-edge AI technologies.
arXiv Detail & Related papers (2024-10-06T17:11:29Z) - Explainable AI for Mental Disorder Detection via Social Media: A survey and outlook [0.7689629183085726]
We conduct a thorough survey to explore the intersection of data science, artificial intelligence, and mental healthcare.
A significant portion of the population actively engages in online social media platforms, creating a vast repository of personal data.
The paper navigates through traditional diagnostic methods, state-of-the-art data- and AI-driven research studies, and the emergence of explainable AI (XAI) models for mental healthcare.
arXiv Detail & Related papers (2024-06-10T02:51:16Z) - Cyberbully and Online Harassment: Issues Associated with Digital Wellbeing [0.0]
This research synthesizes empirical findings from diverse studies to evaluate how innovative technological interventions contribute to reducing the prevalence of cyberbullying.
The study focuses on the effectiveness of these interventions in various settings, highlighting the need for adaptive strategies that respond to the dynamic digital landscape.
arXiv Detail & Related papers (2024-04-29T17:49:49Z) - EmoScan: Automatic Screening of Depression Symptoms in Romanized Sinhala Tweets [0.0]
This work explores the utilization of Romanized Sinhala social media data to identify individuals at risk of depression.
A machine learning-based framework is presented for the automatic screening of depression symptoms by analyzing language patterns, sentiment, and behavioural cues.
arXiv Detail & Related papers (2024-03-28T10:31:09Z) - The Age of Synthetic Realities: Challenges and Opportunities [85.058932103181]
We highlight the crucial need for the development of forensic techniques capable of identifying harmful synthetic creations and distinguishing them from reality.
Our focus extends to various forms of media, such as images, videos, audio, and text, as we examine how synthetic realities are crafted and explore approaches to detecting these malicious creations.
This study is of paramount importance due to the rapid progress of AI generative techniques and their impact on the fundamental principles of Forensic Science.
arXiv Detail & Related papers (2023-06-09T15:55:10Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Intelligent interactive technologies for mental health and well-being [70.1586005070678]
The paper critically analyzes existing solutions with the outlooks for their future.
In particular, we:.
give an overview of the technology for mental health,.
critically analyze the technology against the proposed criteria, and.
provide the design outlooks for these technologies.
arXiv Detail & Related papers (2021-05-11T19:04:21Z) - Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News [57.9843300852526]
We introduce the more realistic and challenging task of defending against machine-generated news that also includes images and captions.
To identify the possible weaknesses that adversaries can exploit, we create a NeuralNews dataset composed of 4 different types of generated articles.
In addition to the valuable insights gleaned from our user study experiments, we provide a relatively effective approach based on detecting visual-semantic inconsistencies.
arXiv Detail & Related papers (2020-09-16T14:13:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.