Cyberbully and Online Harassment: Issues Associated with Digital Wellbeing
- URL: http://arxiv.org/abs/2404.18989v1
- Date: Mon, 29 Apr 2024 17:49:49 GMT
- Title: Cyberbully and Online Harassment: Issues Associated with Digital Wellbeing
- Authors: Manasi Kulkarni, Siddhi Durve, Bochen Jia,
- Abstract summary: This research synthesizes empirical findings from diverse studies to evaluate how innovative technological interventions contribute to reducing the prevalence of cyberbullying.
The study focuses on the effectiveness of these interventions in various settings, highlighting the need for adaptive strategies that respond to the dynamic digital landscape.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As digital technology becomes increasingly embedded in daily life, its impact on social interactions has become a critical area of study, particularly concerning cyberbullying. This meta-analysis investigates the dual role of technology in cyberbullying both as a catalyst that can exacerbate the issue and as a potential solution. Cyberbullying, characterized by the use of digital platforms to harass, threaten, or humiliate individuals, poses significant challenges to mental and social wellbeing. This research synthesizes empirical findings from diverse studies to evaluate how innovative technological interventions, such as content monitoring algorithms, anonymous reporting systems, and educational initiatives integrated within digital platforms, contribute to reducing the prevalence of cyberbullying. The study focuses on the effectiveness of these interventions in various settings, highlighting the need for adaptive strategies that respond to the dynamic digital landscape. By offering a comprehensive overview of the current state of cyberbullying and the efficacy of technology based solutions, this analysis provides valuable insights for stakeholders, including educators, policymakers, and technology developers, aiming to enhance digital wellbeing and create safer online environments. The findings underscore the importance of leveraging technology not only as a medium of communication but also as a strategic tool to combat the negative impacts of cyberbullying, thus promoting a more inclusive and respectful digital world.
Related papers
- Deep Learning Approaches for Detecting Adversarial Cyberbullying and Hate Speech in Social Networks [0.0]
This paper focuses on detecting cyberbullying in adversarial attack content within social networking site text data, specifically emphasizing hate speech.
An LSTM model with a fixed epoch of 100 demonstrated remarkable performance, achieving high accuracy, precision, recall, F1-score, and AUC-ROC scores of 87.57%, 88.73%, 87.57%, 88.15%, and 91% respectively.
arXiv Detail & Related papers (2024-05-30T21:44:15Z) - Cyberbullying Detection: Exploring Datasets, Technologies, and Approaches on Social Media Platforms [3.235558067839701]
This paper presents a comprehensive systematic review of studies conducted on cyberbullying detection.
It explores existing studies, proposed solutions, identified gaps, datasets, technologies, approaches, challenges, and recommendations.
arXiv Detail & Related papers (2024-05-22T04:58:20Z) - Exploring Cybercriminal Activities, Behaviors and Profiles [2.7195102129095003]
This article explores cybercriminal activities and behavior from a psychology and human aspects perspective.
We examine motivations, psychological and other interdisciplinary concepts as they may impact/influence cybercriminal activities.
arXiv Detail & Related papers (2023-08-30T10:57:19Z) - The Age of Synthetic Realities: Challenges and Opportunities [85.058932103181]
We highlight the crucial need for the development of forensic techniques capable of identifying harmful synthetic creations and distinguishing them from reality.
Our focus extends to various forms of media, such as images, videos, audio, and text, as we examine how synthetic realities are crafted and explore approaches to detecting these malicious creations.
This study is of paramount importance due to the rapid progress of AI generative techniques and their impact on the fundamental principles of Forensic Science.
arXiv Detail & Related papers (2023-06-09T15:55:10Z) - Machine Unlearning: A Survey [56.79152190680552]
A special need has arisen where, due to privacy, usability, and/or the right to be forgotten, information about some specific samples needs to be removed from a model, called machine unlearning.
This emerging technology has drawn significant interest from both academics and industry due to its innovation and practicality.
No study has analyzed this complex topic or compared the feasibility of existing unlearning solutions in different kinds of scenarios.
The survey concludes by highlighting some of the outstanding issues with unlearning techniques, along with some feasible directions for new research opportunities.
arXiv Detail & Related papers (2023-06-06T10:18:36Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - Cyberbullying in Text Content Detection: An Analytical Review [0.0]
Online social networks increase the user's exposure to life-threatening situations such as suicide, eating disorder, cybercrime, compulsive behavior, anxiety, and depression.
To tackle the issue of cyberbullying, most existing literature focuses on developing approaches to identifying factors and understanding the textual factors associated with cyberbullying.
This paper conducts a comprehensive literature review to provide an understanding of cyberbullying detection.
arXiv Detail & Related papers (2023-03-18T21:23:06Z) - Investigating Participation Mechanisms in EU Code Week [68.8204255655161]
Digital competence (DC) is a broad set of skills, attitudes, and knowledge for confident, critical and use of digital technologies.
The aim of the manuscript is to offer a detailed and comprehensive statistical description of Code Week's participation in the EU Member States.
arXiv Detail & Related papers (2022-05-29T19:16:03Z) - Cyberbullying Indicator as a Precursor to a Cyber Construct Development [0.0]
This study proposes a cyberbullying framework based on the identification of some observable behavioral indicators.
Using a self-administered measurement instrument from 30-respondents, the study observed the probability of a cyberbully construct.
arXiv Detail & Related papers (2022-03-31T07:55:51Z) - Intelligent interactive technologies for mental health and well-being [70.1586005070678]
The paper critically analyzes existing solutions with the outlooks for their future.
In particular, we:.
give an overview of the technology for mental health,.
critically analyze the technology against the proposed criteria, and.
provide the design outlooks for these technologies.
arXiv Detail & Related papers (2021-05-11T19:04:21Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.