Creation and manipulation of Schrödinger cat states based on semiclassical predictions
- URL: http://arxiv.org/abs/2501.09318v1
- Date: Thu, 16 Jan 2025 06:19:41 GMT
- Title: Creation and manipulation of Schrödinger cat states based on semiclassical predictions
- Authors: N. G. Veselkova, Roman Goncharov, Alexei D. Kiselev,
- Abstract summary: We consider the generation of Schr"odinger cat states using a quantum measurement-induced logical gate.
We show that the fidelity between the exact solution for the gate output state and the "perfect" Schr"odinger cat reconstructed from the semiclassical theory can reach high values exceeding 0.99.
- Score: 0.0
- License:
- Abstract: We consider the generation of Schr\"odinger cat states using a quantum measurement-induced logical gate where entanglement between the input state of the target oscillator and the Fock state of the ancillary system produced by the quantum non-demolition entangling $C_Z$ operation is combined with the homodyne measurement. We utilize the semiclassical approach to construct both the input-output mapping of the field variables in the phase space and the wave function of the output state. This approach is found to predict that the state at the gate output is represented by a minimum disturbed cat-like state which is a superposition of two initial state copies symmetrically displaced by momentum variable. For the target oscillator prepared in the coherent state, we show that the fidelity between the exact solution for the gate output state and the "perfect" Schr\"odinger cat reconstructed from the semiclassical theory can reach high values exceeding 0.99.
Related papers
- Generation of bipartite mechanical cat state by performing projective Bell state measurement [0.0]
Quantum state preparation and measurement of photonic and phononic Schr"odinger cat states have gathered significant interest.
We generate four bipartite phononic Bell cat states using an entanglement swapping scheme achieved through projective Bell state measurements on two superconducting qubits.
arXiv Detail & Related papers (2024-04-24T17:38:32Z) - Measurement-assisted non-Gaussian gate for Schr\"odinger cat states
preparation: Fock resource state versus cubic phase state [0.0]
We consider the preparation of Schr"odinger cat states using a measurement-assisted gate based on the Fock resource state.
We compare the efficiency of two schemes, that is, their ability to produce cat-like superpositions with high fidelity and probability of success.
arXiv Detail & Related papers (2023-07-12T17:55:25Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - The squeezed Kerr oscillator: spectral kissing and phase-flip robustness [0.0]
We realize an elementary quantum optics model, the squeezed Kerr oscillator.
For the first time, we resolve up to the tenth excited state.
Considering the Kerr-cat qubit encoded in this ground state manifold, we achieve for the first time quantum nondemolition readout fidelities greater than 99%.
arXiv Detail & Related papers (2022-09-08T17:21:27Z) - A Quantum Optimal Control Problem with State Constrained Preserving
Coherence [68.8204255655161]
We consider a three-level $Lambda$-type atom subjected to Markovian decoherence characterized by non-unital decoherence channels.
We formulate the quantum optimal control problem with state constraints where the decoherence level remains within a pre-defined bound.
arXiv Detail & Related papers (2022-03-24T21:31:34Z) - Determining ground-state phase diagrams on quantum computers via a
generalized application of adiabatic state preparation [61.49303789929307]
We use a local adiabatic ramp for state preparation to allow us to directly compute ground-state phase diagrams on a quantum computer via time evolution.
We are able to calculate an accurate phase diagram on both two and three site systems using IBM quantum machines.
arXiv Detail & Related papers (2021-12-08T23:59:33Z) - Interplay between transport and quantum coherences in free fermionic
systems [58.720142291102135]
We study the quench dynamics in free fermionic systems.
In particular, we identify a function, that we dub emphtransition map, which takes the value of the stationary current as input and gives the value of correlation as output.
arXiv Detail & Related papers (2021-03-24T17:47:53Z) - Quantum statistics of Schr\"odinger cat states prepared by logical gate
with non-Gaussian resource state [0.0]
A measurement-induced continuous-variable logical gate is able to prepare Schr"odinger cat states if the gate uses a non-Gaussian resource state.
A detailed analysis of the fidelity between the gate output state and high-quality Schr"odinger cat state is performed.
arXiv Detail & Related papers (2021-02-24T11:09:53Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Generation of Schr\"odinger cat states through photon-assisted
Landau-Zener-St\"uckelberg interferometry [0.0]
We propose a conceptually new method for creating Schr"odinger cat states, based on photon-assisted Landau-Zener-St"uckelberg interferometry.
We show that by initializing the qubit in one of its basis states, performing three consecutive sweeps of the qubit energy splitting across the 1-photon resonance, the parity of the photon field can be purified to very high degree.
arXiv Detail & Related papers (2020-08-27T14:37:57Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.