Measurement-assisted non-Gaussian gate for Schr\"odinger cat states
preparation: Fock resource state versus cubic phase state
- URL: http://arxiv.org/abs/2307.06349v2
- Date: Sun, 31 Dec 2023 13:59:39 GMT
- Title: Measurement-assisted non-Gaussian gate for Schr\"odinger cat states
preparation: Fock resource state versus cubic phase state
- Authors: A. V. Baeva, N. G. Veselkova, N. I. Masalaeva, and I. V. Sokolov
- Abstract summary: We consider the preparation of Schr"odinger cat states using a measurement-assisted gate based on the Fock resource state.
We compare the efficiency of two schemes, that is, their ability to produce cat-like superpositions with high fidelity and probability of success.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we consider the preparation of Schr\"odinger cat states using
a measurement-assisted gate based on the Fock resource state, the quantum
non-demolition (QND) entangling operation, and the homodyne measurement.
Previously we have investigated the gate, which for the same goal uses the
ancillary non-Gaussian cubic phase state generated from quadrature squeezed
states at realistic (finite) squeezing. It is of evident interest to compare
the efficiency of both schemes, that is, their ability to produce cat-like
superpositions with high fidelity and probability of success. We introduce, in
parallel with the exact theoretical description of the gate operation, a clear
visual interpretation of the output state based on the semiclassical mapping of
the input field variables. The emergence of the superpositions of copies of the
input state in both schemes is due to the fact that such mapping is compatible
with two (or, in general, more) sets of values of the output field observables.
We demonstrate that even fine details of the output of both gates are
effectively predicted and interpreted in our approach. We examine the fidelity
and success probability and reveal the ranges of physical parameters where the
Fock state-based and the cubic phase state-based gates demonstrate comparable
fidelity and (or) probability of success.
Related papers
- Entangling Schrödinger's cat states by seeding a Bell state or swapping the cats [0.17708236183599538]
We show that a DV-CV hybrid approach enables us to entangle a pair of Schr"odinger's cat states by two straightforward methods.
Our work offers a simple yet powerful application of DV-CV hybridization while also highlighting the scalability of this planar KPO system.
arXiv Detail & Related papers (2024-06-26T01:04:24Z) - Schr\"odinger cat states prepared by logical gate with non-Gaussian
resource state: effect of finite squeezing and efficiency versus monotones [0.0]
We present exact solution for the gate output state and demonstrate that there exists a degree of squeezing.
We argue that measures of non-Gaussianity of the resource state as Wigner logarithmic negativiy and non-Gaussianity may not be directly applicable to assess the efficiency of non-Gaussian gates.
arXiv Detail & Related papers (2022-10-14T11:14:11Z) - Deterministic Gaussian conversion protocols for non-Gaussian single-mode
resources [58.720142291102135]
We show that cat and binomial states are approximately equivalent for finite energy, while this equivalence was previously known only in the infinite-energy limit.
We also consider the generation of cat states from photon-added and photon-subtracted squeezed states, improving over known schemes by introducing additional squeezing operations.
arXiv Detail & Related papers (2022-04-07T11:49:54Z) - Determining ground-state phase diagrams on quantum computers via a
generalized application of adiabatic state preparation [61.49303789929307]
We use a local adiabatic ramp for state preparation to allow us to directly compute ground-state phase diagrams on a quantum computer via time evolution.
We are able to calculate an accurate phase diagram on both two and three site systems using IBM quantum machines.
arXiv Detail & Related papers (2021-12-08T23:59:33Z) - Quantum state truncation using an optical parametric amplifier and a
beamsplitter [0.0]
We present a scheme of quantum state truncation in the Fock basis (quantum scissors)
A truncated state is generated after performing photodetections in the global state.
We quantify the nonclassicality degree of the generated states using the Wigner-Yanase information measure.
arXiv Detail & Related papers (2021-09-24T15:21:12Z) - Interplay between transport and quantum coherences in free fermionic
systems [58.720142291102135]
We study the quench dynamics in free fermionic systems.
In particular, we identify a function, that we dub emphtransition map, which takes the value of the stationary current as input and gives the value of correlation as output.
arXiv Detail & Related papers (2021-03-24T17:47:53Z) - Quantum statistics of Schr\"odinger cat states prepared by logical gate
with non-Gaussian resource state [0.0]
A measurement-induced continuous-variable logical gate is able to prepare Schr"odinger cat states if the gate uses a non-Gaussian resource state.
A detailed analysis of the fidelity between the gate output state and high-quality Schr"odinger cat state is performed.
arXiv Detail & Related papers (2021-02-24T11:09:53Z) - Wave-function engineering via conditional quantum teleportation with
non-Gaussian entanglement resource [0.0]
We propose and analyze a setup to tailor the wave functions of the quantum states.
We can generate various classes of quantum states such as Schr"odinger cat states, four-component cat states, superpositions of Fock states, and cubic phase states.
arXiv Detail & Related papers (2021-02-04T01:31:11Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Gaussian conversion protocols for cubic phase state generation [104.23865519192793]
Universal quantum computing with continuous variables requires non-Gaussian resources.
The cubic phase state is a non-Gaussian state whose experimental implementation has so far remained elusive.
We introduce two protocols that allow for the conversion of a non-Gaussian state to a cubic phase state.
arXiv Detail & Related papers (2020-07-07T09:19:49Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.