Strategic Base Representation Learning via Feature Augmentations for Few-Shot Class Incremental Learning
- URL: http://arxiv.org/abs/2501.09361v1
- Date: Thu, 16 Jan 2025 08:17:32 GMT
- Title: Strategic Base Representation Learning via Feature Augmentations for Few-Shot Class Incremental Learning
- Authors: Parinita Nema, Vinod K Kurmi,
- Abstract summary: Few-shot class incremental learning implies the model to learn new classes while retaining knowledge of previously learned classes with a small number of training instances.
Existing frameworks typically freeze the parameters of the previously learned classes during the incorporation of new classes.
We propose a novel feature augmentation driven contrastive learning framework designed to enhance the separation of previously learned classes to accommodate new classes.
- Score: 1.5269945475810085
- License:
- Abstract: Few-shot class incremental learning implies the model to learn new classes while retaining knowledge of previously learned classes with a small number of training instances. Existing frameworks typically freeze the parameters of the previously learned classes during the incorporation of new classes. However, this approach often results in suboptimal class separation of previously learned classes, leading to overlap between old and new classes. Consequently, the performance of old classes degrades on new classes. To address these challenges, we propose a novel feature augmentation driven contrastive learning framework designed to enhance the separation of previously learned classes to accommodate new classes. Our approach involves augmenting feature vectors and assigning proxy labels to these vectors. This strategy expands the feature space, ensuring seamless integration of new classes within the expanded space. Additionally, we employ a self-supervised contrastive loss to improve the separation between previous classes. We validate our framework through experiments on three FSCIL benchmark datasets: CIFAR100, miniImageNet, and CUB200. The results demonstrate that our Feature Augmentation driven Contrastive Learning framework significantly outperforms other approaches, achieving state-of-the-art performance.
Related papers
- Efficient Non-Exemplar Class-Incremental Learning with Retrospective Feature Synthesis [21.348252135252412]
Current Non-Exemplar Class-Incremental Learning (NECIL) methods mitigate forgetting by storing a single prototype per class.
We propose a more efficient NECIL method that replaces prototypes with synthesized retrospective features for old classes.
Our method significantly improves the efficiency of non-exemplar class-incremental learning and achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-11-03T07:19:11Z) - Expandable Subspace Ensemble for Pre-Trained Model-Based Class-Incremental Learning [65.57123249246358]
We propose ExpAndable Subspace Ensemble (EASE) for PTM-based CIL.
We train a distinct lightweight adapter module for each new task, aiming to create task-specific subspaces.
Our prototype complement strategy synthesizes old classes' new features without using any old class instance.
arXiv Detail & Related papers (2024-03-18T17:58:13Z) - Few-Shot Class-Incremental Learning via Training-Free Prototype
Calibration [67.69532794049445]
We find a tendency for existing methods to misclassify the samples of new classes into base classes, which leads to the poor performance of new classes.
We propose a simple yet effective Training-frEE calibratioN (TEEN) strategy to enhance the discriminability of new classes.
arXiv Detail & Related papers (2023-12-08T18:24:08Z) - Cross-Class Feature Augmentation for Class Incremental Learning [45.91253737682168]
We propose a novel class incremental learning approach by incorporating a feature augmentation technique motivated by adversarial attacks.
The proposed approach has a unique perspective to utilize the previous knowledge in class incremental learning since it augments features of arbitrary target classes.
Our method consistently outperforms existing class incremental learning methods by significant margins in various scenarios.
arXiv Detail & Related papers (2023-04-04T15:48:09Z) - Class-Incremental Learning with Cross-Space Clustering and Controlled
Transfer [9.356870107137093]
In class-incremental learning, the model is expected to learn new classes continually while maintaining knowledge on previous classes.
We propose two distillation-based objectives for class incremental learning.
arXiv Detail & Related papers (2022-08-07T16:28:02Z) - Few-Shot Class-Incremental Learning by Sampling Multi-Phase Tasks [59.12108527904171]
A model should recognize new classes and maintain discriminability over old classes.
The task of recognizing few-shot new classes without forgetting old classes is called few-shot class-incremental learning (FSCIL)
We propose a new paradigm for FSCIL based on meta-learning by LearnIng Multi-phase Incremental Tasks (LIMIT)
arXiv Detail & Related papers (2022-03-31T13:46:41Z) - Long-tail Recognition via Compositional Knowledge Transfer [60.03764547406601]
We introduce a novel strategy for long-tail recognition that addresses the tail classes' few-shot problem.
Our objective is to transfer knowledge acquired from information-rich common classes to semantically similar, and yet data-hungry, rare classes.
Experiments show that our approach can achieve significant performance boosts on rare classes while maintaining robust common class performance.
arXiv Detail & Related papers (2021-12-13T15:48:59Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
Existing Class Incremental Learning (CIL) methods are based on a supervised classification framework sensitive to data labels.
When updating them based on the new class data, they suffer from catastrophic forgetting: the model cannot discern old class data clearly from the new.
In this paper, we explore the performance of Self-Supervised representation learning in Class Incremental Learning (SSCIL) for the first time.
arXiv Detail & Related papers (2021-11-18T06:58:19Z) - Continual Semantic Segmentation via Repulsion-Attraction of Sparse and
Disentangled Latent Representations [18.655840060559168]
This paper focuses on class incremental continual learning in semantic segmentation.
New categories are made available over time while previous training data is not retained.
The proposed continual learning scheme shapes the latent space to reduce forgetting whilst improving the recognition of novel classes.
arXiv Detail & Related papers (2021-03-10T21:02:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.