論文の概要: Predicting Air Temperature from Volumetric Urban Morphology with Machine Learning
- arxiv url: http://arxiv.org/abs/2501.09469v1
- Date: Thu, 16 Jan 2025 11:10:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:11:24.336915
- Title: Predicting Air Temperature from Volumetric Urban Morphology with Machine Learning
- Title(参考訳): 機械学習による体積都市形態からの空気温度予測
- Authors: Berk Kıvılcım, Patrick Erik Bradley,
- Abstract要約: 本稿では,都市などの大規模データセットに対して,効率的にかつ高速に動作するVoxelにCityGMLデータを変換する手法を提案する。
複数の都市の3D都市データとそれに対応する気温データを用いて、機械学習モデルを開発する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this study, we firstly introduce a method that converts CityGML data into voxels which works efficiently and fast in high resolution for large scale datasets such as cities but by sacrificing some building details to overcome the limitations of previous voxelization methodologies that have been computationally intensive and inefficient at transforming large-scale urban areas into voxel representations for high resolution. Those voxelized 3D city data from multiple cities and corresponding air temperature data are used to develop a machine learning model. Before the model training, Gaussian blurring is implemented on input data to consider spatial relationships, as a result the correlation rate between air temperature and volumetric building morphology is also increased after the Gaussian blurring. After the model training, the prediction results are not just evaluated with Mean Square Error (MSE) but some image similarity metrics such as Structural Similarity Index Measure (SSIM) and Learned Perceptual Image Patch Similarity (LPIPS) that are able to detect and consider spatial relations during the evaluation process. This trained model is capable of predicting the spatial distribution of air temperature by using building volume information of corresponding pixel as input. By doing so, this research aims to assist urban planners in incorporating environmental parameters into their planning strategies, thereby facilitating more sustainable and inhabitable urban environments.
- Abstract(参考訳): 本研究ではまず,都市部における大規模データセットの高解像度化を効果的かつ高速に行うとともに,大規模都市部を高解像度化するために,計算集約的で非効率な従来のボクセル化手法の限界を克服するために,ビルの詳細を犠牲にして,都市域のデータを高解像度化のために効率的にボクセルに変換する方法を提案する。
複数の都市の3D都市データとそれに対応する気温データを用いて、機械学習モデルを開発する。
モデルトレーニングの前には,空間的関係を考慮した入力データにガウス的ぼかしを施し,ガウス的ぼかし後の空気温度と容積的建物形態との相関率も向上する。
モデルトレーニング後、予測結果は平均平方誤差(MSE)だけでなく、構造的類似度指数測定(SSIM)やLearted Perceptual Image Patch similarity(LPIPS)などの画像類似度指標を用いて評価され、評価プロセス中に空間的関係を検出し、検討することができる。
このトレーニングモデルは,対応する画素の体積情報を入力として利用することにより,空気温度の空間分布を予測することができる。
そこで本研究は, 都市プランナーが環境パラメータを計画戦略に組み込むことで, より持続的で住みやすい都市環境を実現することを目的としている。
関連論文リスト
- Geospatial Data Fusion: Combining Lidar, SAR, and Optical Imagery with AI for Enhanced Urban Mapping [0.0]
本研究では,高度都市マッピングのための高度な人工知能技術によるライダー,合成開口レーダ(SAR),光学画像の統合について検討する。
この研究は、都市の特徴抽出のための主要なディープラーニングモデルとして、FCN(Fully Convolutional Networks)を採用している。
主な発見は、FCN-PSOモデルが92.3%の画素精度、IoUの平均インターセクションは87.6%で、従来の単一センサーのアプローチを上回ったことを示している。
論文 参考訳(メタデータ) (2024-12-25T22:17:31Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
学習可能なクエリの集合を用いて、占有された場所とクラスを同時に予測するフレームワークを提案する。
OPUSには、モデルパフォーマンスを高めるための非自明な戦略が組み込まれている。
最も軽量なモデルではOcc3D-nuScenesデータセットの2倍 FPS に優れたRayIoUが得られる一方、最も重いモデルは6.1 RayIoUを上回ります。
論文 参考訳(メタデータ) (2024-09-14T07:44:22Z) - Machine Learning Framework for High-Resolution Air Temperature Downscaling Using LiDAR-Derived Urban Morphological Features [0.0]
本研究では,UrbClimが生成したデータセットを用いて,大気温度をダウンスケールするためのデータ駆動型フレームワークを提案する。
都市形態特徴を抽出するために,まず,LiDARデータとディープラーニングモデルを用いて3次元ビルディングモデルを構築した。
この枠組みは高分解能で空気温度を推定し、街路レベルでの局所的な空気温度パターンの同定を可能にした。
論文 参考訳(メタデータ) (2024-08-31T12:59:21Z) - Deep Generative Data Assimilation in Multimodal Setting [0.1052166918701117]
本研究では,マルチモーダル・セッティングにおけるスコアベースラテント・アシミレーション(SLAMS)を提案する。
気象観測所のデータと衛星画像とを同化して、垂直温度分布を世界規模で校正する。
私たちの研究は、実世界のデータセットを用いたマルチモーダルデータ同化に、初めて深層生成フレームワークを適用しました。
論文 参考訳(メタデータ) (2024-04-10T00:25:09Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
エッジ・ザ・エア計算(AirComp)によるフェデレーション学習(FL)に焦点を当てる。
本稿では,AirComp ベースの FedAvg (AirFedAvg) アルゴリズムの凸および非凸条件下での収束について述べる。
エッジデバイス(モデル、勾配、モデル差など)で送信できるローカルアップデートの種類によって、AirFedAvgで送信するとアグリゲーションエラーが発生する可能性がある。
さらに、より実用的な信号処理方式を検討し、通信効率を改善し、これらの信号処理方式によって引き起こされるモデル集約誤差の異なる形式に収束解析を拡張する。
論文 参考訳(メタデータ) (2023-10-16T05:49:28Z) - Semi-supervised Learning from Street-View Images and OpenStreetMap for
Automatic Building Height Estimation [59.6553058160943]
本稿では,Mapillary SVIとOpenStreetMapのデータから建物の高さを自動的に推定する半教師付き学習(SSL)手法を提案する。
提案手法は, 平均絶対誤差(MAE)が約2.1mである建物の高さを推定する上で, 明らかな性能向上につながる。
予備結果は,低コストなVGIデータに基づく提案手法のスケールアップに向けた今後の取り組みを期待し,動機づけるものである。
論文 参考訳(メタデータ) (2023-07-05T18:16:30Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge
Transfer [58.6106391721944]
クロスシティの知識は、データ不足の都市から学んだモデルを活用して、データ不足の都市の学習プロセスに役立てるという、その将来性を示している。
本稿では,ST-GFSLと呼ばれるS時間グラフのためのモデルに依存しない数ショット学習フレームワークを提案する。
本研究では,4つの交通速度予測ベンチマークの総合的な実験を行い,ST-GFSLの有効性を最先端手法と比較した。
論文 参考訳(メタデータ) (2022-05-27T12:46:52Z) - Learning Similarity Metrics for Volumetric Simulations with Multiscale
CNNs [25.253880881581956]
本研究では,エントロピーに基づく類似性モデルを提案する。
我々は数値PDEソルバと既存のシミュレーションデータリポジトリからフィールドのコレクションを作成する。
ボリューム類似度メトリック(VolSiM)を演算するマルチスケールCNNアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-02-08T19:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。