論文の概要: Exploring the Inquiry-Diagnosis Relationship with Advanced Patient Simulators
- arxiv url: http://arxiv.org/abs/2501.09484v2
- Date: Tue, 11 Mar 2025 06:54:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 16:15:12.194607
- Title: Exploring the Inquiry-Diagnosis Relationship with Advanced Patient Simulators
- Title(参考訳): 先進的患者シミュレーターと診断・診断の関係を探る
- Authors: Zhaocheng Liu, Quan Tu, Wen Ye, Yu Xiao, Zhishou Zhang, Hengfu Cui, Yalun Zhu, Qiang Ju, Shizheng Li, Jian Xie,
- Abstract要約: 本稿では,実際の医師と患者との会話から対話戦略を抽出し,患者シミュレータのトレーニングを指導する。
本シミュレータは, 動的対話戦略を用いて, 人為性が高く, 幻覚率も低いことを示す。
- 参考スコア(独自算出の注目度): 5.217925404425509
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recently, large language models have shown great potential to transform online medical consultation. Despite this, most research targets improving diagnostic accuracy with ample information, often overlooking the inquiry phase. Some studies try to evaluate or refine doctor models by using prompt-engineered patient agents. However, prompt engineering alone falls short in accurately simulating real patients. We need to explore new paradigms for patient simulation. Furthermore, the relationship between inquiry and diagnosis remains unexplored. This paper extracts dialogue strategies from real doctor-patient conversations to guide the training of a patient simulator. Our simulator shows higher anthropomorphism and lower hallucination rates, using dynamic dialogue strategies. This innovation offers a more accurate evaluation of diagnostic models and generates realistic synthetic data. We conduct extensive experiments on the relationship between inquiry and diagnosis, showing they adhere to Liebig's law: poor inquiry limits diagnosis effectiveness, regardless of diagnostic skill, and vice versa. The experiments also reveal substantial differences in inquiry performance among models. To delve into this phenomenon, the inquiry process is categorized into four distinct types. Analyzing the distribution of inquiries across these types helps explain the performance differences. The weights of our patient simulator are available https://github.com/PatientSimulator/PatientSimulator.
- Abstract(参考訳): 近年,大規模言語モデルは,オンライン医療相談を変革する大きな可能性を示している。
それにもかかわらず、ほとんどの研究は、十分な情報で診断精度を向上させることを目的としており、しばしば調査フェーズを見下ろしている。
いくつかの研究は、プロンプトエンジニアリングされた患者エージェントを用いて、医師モデルを評価または洗練しようと試みている。
しかし、プロンプトエンジニアリングだけでは、実際の患者を正確にシミュレートするには不十分である。
患者シミュレーションの新しいパラダイムを探求する必要がある。
さらに、調査と診断の関係は未解明のままである。
本稿では,実際の医師と患者との会話から対話戦略を抽出し,患者シミュレータのトレーニングを指導する。
本シミュレータは, 動的対話戦略を用いて, 人為性が高く, 幻覚率も低いことを示す。
この革新は診断モデルのより正確な評価を提供し、リアルな合成データを生成する。
調査と診断の関係について広範囲にわたる実験を行い,Liebigの法則に従属することを示す。
また,実験結果から,モデル間での探索性能に有意な差異が認められた。
この現象を解明するために、調査プロセスは4つの異なるタイプに分類される。
これらのタイプの問合せの分布を分析することは、パフォーマンスの違いを説明するのに役立ちます。
患者シミュレータの重みはhttps://github.com/PatientSimulator/PatientSimulator.comで利用可能です。
関連論文リスト
- LLMs Can Simulate Standardized Patients via Agent Coevolution [8.539733225671059]
標準化された患者(SP)を用いた医療従事者の養成は、依然として複雑な課題である。
EvoPatientは、患者エージェントと医師エージェントがマルチターン対話を通じて診断プロセスをシミュレートする、新しいシミュレートされた患者フレームワークである。
我々のフレームワークは、既存の推論手法を10%以上改善し、要求アライメントと人間の嗜好を改善する。
論文 参考訳(メタデータ) (2024-12-16T12:36:47Z) - Automatic Differential Diagnosis using Transformer-Based Multi-Label Sequence Classification [0.0]
本稿では,患者の年齢,性別,医療歴,症状に基づく鑑別診断のためのトランスフォーマーベースのアプローチを提案する。
DDXPlus データセットを用いて,49 種類の疾患を鑑別し,鑑別診断情報を提供する。
論文 参考訳(メタデータ) (2024-08-28T14:40:15Z) - Conversational Disease Diagnosis via External Planner-Controlled Large Language Models [18.93345199841588]
本研究は,医師のエミュレートによる計画能力の向上を目的としたLCMに基づく診断システムを提案する。
実際の患者電子カルテデータを利用して,仮想患者と医師とのシミュレーション対話を構築した。
論文 参考訳(メタデータ) (2024-04-04T06:16:35Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - Uncertainty of Thoughts: Uncertainty-Aware Planning Enhances Information Seeking in Large Language Models [73.79091519226026]
Uncertainty of Thoughts (UoT) は、大きな言語モデルを拡張するアルゴリズムであり、効果的な質問をすることで積極的に情報を求めることができる。
医療診断、トラブルシューティング、および20の質問ゲームに関する実験において、UoTは、タスク完了の成功率において平均38.1%のパフォーマンス向上を達成した。
論文 参考訳(メタデータ) (2024-02-05T18:28:44Z) - Are Generative AI systems Capable of Supporting Information Needs of
Patients? [4.485098382568721]
本研究は, 画像診断における患者情報への責任を負うことなく, 生成的視覚質問応答システムの有効性について検討する。
胸部CT検査を施行し, 胸部CT検査を施行し, 胸部CT検査を施行し, 胸部CT検査を施行した。
参加者と医療専門家の会話のテーマ分析を用いて,対話を通して一般的に発生するテーマを特定した。
我々は,放射線技師の反応に対して,最先端の2つの生成的視覚言語モデルを評価する。
論文 参考訳(メタデータ) (2024-01-31T23:24:37Z) - Empowering Psychotherapy with Large Language Models: Cognitive
Distortion Detection through Diagnosis of Thought Prompting [82.64015366154884]
本研究では,認知的歪み検出の課題について検討し,思考の早期発見(DoT)を提案する。
DoTは、事実と思考を分離するための主観的評価、思考と矛盾する推論プロセスを引き出すための対照的な推論、認知スキーマを要約するスキーマ分析という3つの段階を通して、患者のスピーチの診断を行う。
実験により、DoTは認知的歪み検出のためのChatGPTよりも大幅に改善され、一方で人間の専門家が承認した高品質な合理性を生成することが示された。
論文 参考訳(メタデータ) (2023-10-11T02:47:21Z) - Language models are susceptible to incorrect patient self-diagnosis in
medical applications [0.0]
患者からの自己診断報告を含むように修正された米国の医療委員会試験からの複数項目の質問を含む様々なLSMを提示する。
以上の結果から, 誤った偏見検証情報を提案すると, LLMの診断精度は劇的に低下することが明らかとなった。
論文 参考訳(メタデータ) (2023-09-17T19:56:39Z) - Towards the Identifiability and Explainability for Personalized Learner
Modeling: An Inductive Paradigm [36.60917255464867]
本稿では,エンコーダ・デコーダモデルにインスパイアされた新しい応答効率応答パラダイムに基づく,識別可能な認知診断フレームワークを提案する。
診断精度を損なうことなく,ID-CDFが効果的に対処できることが示唆された。
論文 参考訳(メタデータ) (2023-09-01T07:18:02Z) - RECAP-KG: Mining Knowledge Graphs from Raw GP Notes for Remote COVID-19
Assessment in Primary Care [45.43645878061283]
本稿では,患者相談の前後に書かれた生のGP医療ノートから知識グラフ構築を行うフレームワークを提案する。
私たちの知識グラフには、既存の患者の症状、その持続時間、重症度に関する情報が含まれています。
本フレームワークを英国における新型コロナウイルス患者の相談ノートに適用する。
論文 参考訳(メタデータ) (2023-06-17T23:35:51Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
本稿では,マルチモーダル入力を統一的に処理する臨床診断支援として,トランスフォーマーを用いた表現学習モデルについて報告する。
統一モデルは, 肺疾患の同定において, 画像のみのモデル, 非統一型マルチモーダル診断モデルより優れていた。
論文 参考訳(メタデータ) (2023-06-01T16:23:47Z) - Scalable Online Disease Diagnosis via Multi-Model-Fused Actor-Critic
Reinforcement Learning [9.274138493400436]
医療のアドバイスをオンラインで求めている人にとっては、患者と対話して自動的に疾患を診断できるAIベースの対話エージェントが有効な選択肢だ。
これは、強化学習(RL)アプローチを自然解として提案した逐次的特徴(症状)選択と分類の問題として定式化することができる。
生成的アクターネットワークと診断批評家ネットワークから構成されるMMF-AC(Multi-Model-Fused Actor-Critic)フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-08T03:06:16Z) - Efficient Symptom Inquiring and Diagnosis via Adaptive Alignment of
Reinforcement Learning and Classification [0.6415701940560564]
そこで本研究では,それぞれに強化学習課題と分類課題として定式化された症状検索と疾患診断を併用した医学的自動診断法を提案する。
我々はMedlinePlus知識ベースから抽出された新しいデータセットを作成し、より多くの病気とより完全な症状情報を含む。
実験結果から,本手法は異なるデータセット上での3つの最新手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2021-12-01T11:25:42Z) - Semi-Supervised Variational Reasoning for Medical Dialogue Generation [70.838542865384]
医療対話生成には,患者の状態と医師の行動の2つの重要な特徴がある。
医療対話生成のためのエンドツーエンドの変分推論手法を提案する。
行動分類器と2つの推論検出器から構成される医師政策ネットワークは、拡張推論能力のために提案される。
論文 参考訳(メタデータ) (2021-05-13T04:14:35Z) - Knowledge Grounded Conversational Symptom Detection with Graph Memory
Networks [5.788153402669881]
対話を通じて患者と対話し,臨床症状を自動的に検出し収集するシステムを構築した。
患者が診断のためのダイアログを開始するための明示的な症状のセットが与えられた場合、システムは質問によって暗黙の症状を収集するように訓練される。
各質問に対する患者からの回答を得た後、システムはまた、現在の情報が人間の医師が診断を行うのに十分であるかどうかを決定します。
論文 参考訳(メタデータ) (2021-01-24T18:50:16Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
医療コミュニティにおけるこの問題の重要性を示す。
本稿では,変換器 (BERT) モデルによる2方向表現の分類順序の変更について述べる。
約400万人のユニークな患者訪問からなる、大規模なロシアのEHRデータセットを使用します。
論文 参考訳(メタデータ) (2020-07-15T09:22:55Z) - Towards Causality-Aware Inferring: A Sequential Discriminative Approach
for Medical Diagnosis [142.90770786804507]
医学診断アシスタント(MDA)は、疾患を識別するための症状を逐次調査する対話型診断エージェントを構築することを目的としている。
この研究は、因果図を利用して、MDAにおけるこれらの重要な問題に対処しようとする。
本稿では,他の記録から知識を引き出すことにより,非記録的調査に効果的に答える確率に基づく患者シミュレータを提案する。
論文 参考訳(メタデータ) (2020-03-14T02:05:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。