論文の概要: Exploring the Inquiry-Diagnosis Relationship with Advanced Patient Simulators
- arxiv url: http://arxiv.org/abs/2501.09484v2
- Date: Tue, 11 Mar 2025 06:54:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:39:40.694176
- Title: Exploring the Inquiry-Diagnosis Relationship with Advanced Patient Simulators
- Title(参考訳): 先進的患者シミュレーターと診断・診断の関係を探る
- Authors: Zhaocheng Liu, Quan Tu, Wen Ye, Yu Xiao, Zhishou Zhang, Hengfu Cui, Yalun Zhu, Qiang Ju, Shizheng Li, Jian Xie,
- Abstract要約: 本稿では,実際の医師と患者との会話から対話戦略を抽出し,患者シミュレータのトレーニングを指導する。
本シミュレータは, 動的対話戦略を用いて, 人為性が高く, 幻覚率も低いことを示す。
- 参考スコア(独自算出の注目度): 5.217925404425509
- License:
- Abstract: Recently, large language models have shown great potential to transform online medical consultation. Despite this, most research targets improving diagnostic accuracy with ample information, often overlooking the inquiry phase. Some studies try to evaluate or refine doctor models by using prompt-engineered patient agents. However, prompt engineering alone falls short in accurately simulating real patients. We need to explore new paradigms for patient simulation. Furthermore, the relationship between inquiry and diagnosis remains unexplored. This paper extracts dialogue strategies from real doctor-patient conversations to guide the training of a patient simulator. Our simulator shows higher anthropomorphism and lower hallucination rates, using dynamic dialogue strategies. This innovation offers a more accurate evaluation of diagnostic models and generates realistic synthetic data. We conduct extensive experiments on the relationship between inquiry and diagnosis, showing they adhere to Liebig's law: poor inquiry limits diagnosis effectiveness, regardless of diagnostic skill, and vice versa. The experiments also reveal substantial differences in inquiry performance among models. To delve into this phenomenon, the inquiry process is categorized into four distinct types. Analyzing the distribution of inquiries across these types helps explain the performance differences. The weights of our patient simulator are available https://github.com/PatientSimulator/PatientSimulator.
- Abstract(参考訳): 近年,大規模言語モデルは,オンライン医療相談を変革する大きな可能性を示している。
それにもかかわらず、ほとんどの研究は、十分な情報で診断精度を向上させることを目的としており、しばしば調査フェーズを見下ろしている。
いくつかの研究は、プロンプトエンジニアリングされた患者エージェントを用いて、医師モデルを評価または洗練しようと試みている。
しかし、プロンプトエンジニアリングだけでは、実際の患者を正確にシミュレートするには不十分である。
患者シミュレーションの新しいパラダイムを探求する必要がある。
さらに、調査と診断の関係は未解明のままである。
本稿では,実際の医師と患者との会話から対話戦略を抽出し,患者シミュレータのトレーニングを指導する。
本シミュレータは, 動的対話戦略を用いて, 人為性が高く, 幻覚率も低いことを示す。
この革新は診断モデルのより正確な評価を提供し、リアルな合成データを生成する。
調査と診断の関係について広範囲にわたる実験を行い,Liebigの法則に従属することを示す。
また,実験結果から,モデル間での探索性能に有意な差異が認められた。
この現象を解明するために、調査プロセスは4つの異なるタイプに分類される。
これらのタイプの問合せの分布を分析することは、パフォーマンスの違いを説明するのに役立ちます。
患者シミュレータの重みはhttps://github.com/PatientSimulator/PatientSimulator.comで利用可能です。
関連論文リスト
- Worse than Random? An Embarrassingly Simple Probing Evaluation of Large Multimodal Models in Medical VQA [24.10436440624249]
大規模マルチモーダルモデル(LMM)は医療用視覚質問応答(Med-VQA)において顕著な進歩を示した
本研究は, 簡易な探索評価を行う場合, 医学的診断問題に対するランダムな推測よりも, 最先端のモデルの方が悪いことを明らかにした。
論文 参考訳(メタデータ) (2024-05-30T18:56:01Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - Are Generative AI systems Capable of Supporting Information Needs of
Patients? [4.485098382568721]
本研究は, 画像診断における患者情報への責任を負うことなく, 生成的視覚質問応答システムの有効性について検討する。
胸部CT検査を施行し, 胸部CT検査を施行し, 胸部CT検査を施行し, 胸部CT検査を施行した。
参加者と医療専門家の会話のテーマ分析を用いて,対話を通して一般的に発生するテーマを特定した。
我々は,放射線技師の反応に対して,最先端の2つの生成的視覚言語モデルを評価する。
論文 参考訳(メタデータ) (2024-01-31T23:24:37Z) - Empowering Psychotherapy with Large Language Models: Cognitive
Distortion Detection through Diagnosis of Thought Prompting [82.64015366154884]
本研究では,認知的歪み検出の課題について検討し,思考の早期発見(DoT)を提案する。
DoTは、事実と思考を分離するための主観的評価、思考と矛盾する推論プロセスを引き出すための対照的な推論、認知スキーマを要約するスキーマ分析という3つの段階を通して、患者のスピーチの診断を行う。
実験により、DoTは認知的歪み検出のためのChatGPTよりも大幅に改善され、一方で人間の専門家が承認した高品質な合理性を生成することが示された。
論文 参考訳(メタデータ) (2023-10-11T02:47:21Z) - Language models are susceptible to incorrect patient self-diagnosis in
medical applications [0.0]
患者からの自己診断報告を含むように修正された米国の医療委員会試験からの複数項目の質問を含む様々なLSMを提示する。
以上の結果から, 誤った偏見検証情報を提案すると, LLMの診断精度は劇的に低下することが明らかとなった。
論文 参考訳(メタデータ) (2023-09-17T19:56:39Z) - Instrumental Variable Learning for Chest X-ray Classification [52.68170685918908]
本稿では,素因果関係を排除し,正確な因果表現を得るための解釈可能な機器変数(IV)学習フレームワークを提案する。
提案手法の性能はMIMIC-CXR,NIH ChestX-ray 14,CheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-05-20T03:12:23Z) - Deep Multi-modal Fusion of Image and Non-image Data in Disease Diagnosis
and Prognosis: A Review [8.014632186417423]
医療における診断技術の急速な発展は、医師が日常的に発生する異質で相補的なデータを扱い、統合することの要求が高まっている。
近年のマルチモーダルディープラーニング技術の発展に伴い、我々はどのようにして多モーダル情報を抽出して集約し、究極的にはより客観的で定量的なコンピュータ支援の臨床的意思決定を提供するかという重要な疑問に、ますます多くの努力が注がれている。
本総説では,(1)現在のマルチモーダル・ラーニングの概要,(2)マルチモーダル・フュージョン法の要約,(3)パフォーマンスの議論,(4)疾患診断と予後の応用,(5)課題と将来について概説する。
論文 参考訳(メタデータ) (2022-03-25T18:50:03Z) - Semi-Supervised Variational Reasoning for Medical Dialogue Generation [70.838542865384]
医療対話生成には,患者の状態と医師の行動の2つの重要な特徴がある。
医療対話生成のためのエンドツーエンドの変分推論手法を提案する。
行動分類器と2つの推論検出器から構成される医師政策ネットワークは、拡張推論能力のために提案される。
論文 参考訳(メタデータ) (2021-05-13T04:14:35Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z) - Towards Causality-Aware Inferring: A Sequential Discriminative Approach
for Medical Diagnosis [142.90770786804507]
医学診断アシスタント(MDA)は、疾患を識別するための症状を逐次調査する対話型診断エージェントを構築することを目的としている。
この研究は、因果図を利用して、MDAにおけるこれらの重要な問題に対処しようとする。
本稿では,他の記録から知識を引き出すことにより,非記録的調査に効果的に答える確率に基づく患者シミュレータを提案する。
論文 参考訳(メタデータ) (2020-03-14T02:05:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。