論文の概要: HydraMix: Multi-Image Feature Mixing for Small Data Image Classification
- arxiv url: http://arxiv.org/abs/2501.09504v1
- Date: Thu, 16 Jan 2025 12:33:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:10:07.913506
- Title: HydraMix: Multi-Image Feature Mixing for Small Data Image Classification
- Title(参考訳): HydraMix: 小型データ画像分類のためのマルチイメージ特徴混合
- Authors: Christoph Reinders, Frederik Schubert, Bodo Rosenhahn,
- Abstract要約: そこで,HydraMixを提案する。HydraMixは,同じクラスから複数の異なるイメージを混合することによって,新しい画像合成を生成する新しいアーキテクチャである。
以上の結果から,HydraMixは既存の画像分類手法よりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 22.60949950445336
- License:
- Abstract: Training deep neural networks requires datasets with a large number of annotated examples. The collection and annotation of these datasets is not only extremely expensive but also faces legal and privacy problems. These factors are a significant limitation for many real-world applications. To address this, we introduce HydraMix, a novel architecture that generates new image compositions by mixing multiple different images from the same class. HydraMix learns the fusion of the content of various images guided by a segmentation-based mixing mask in feature space and is optimized via a combination of unsupervised and adversarial training. Our data augmentation scheme allows the creation of models trained from scratch on very small datasets. We conduct extensive experiments on ciFAIR-10, STL-10, and ciFAIR-100. Additionally, we introduce a novel text-image metric to assess the generality of the augmented datasets. Our results show that HydraMix outperforms existing state-of-the-art methods for image classification on small datasets.
- Abstract(参考訳): ディープニューラルネットワークのトレーニングには、多数の注釈付きサンプルを持つデータセットが必要である。
これらのデータセットの収集とアノテーションは非常に高価であるだけでなく、法的およびプライバシー上の問題にも直面する。
これらの要因は多くの実世界のアプリケーションにとって重要な制限である。
そこで我々はHydraMixを紹介する。HydraMixは,同じクラスから複数の異なるイメージを混合することによって,新しい画像合成を生成する新しいアーキテクチャである。
HydraMixは、セグメンテーションベースのミキシングマスクによって導かれる様々な画像のコンテントの融合を特徴空間で学習し、教師なしと敵のトレーニングの組み合わせによって最適化される。
私たちのデータ拡張スキームは、非常に小さなデータセットでスクラッチからトレーニングされたモデルの作成を可能にします。
ciFAIR-10, STL-10, ciFAIR-100について広範な実験を行った。
さらに,拡張データセットの汎用性を評価するために,新しいテキストイメージメトリクスを導入する。
以上の結果から,HydraMixは既存の画像分類手法よりも優れていることがわかった。
関連論文リスト
- DiffuseMix: Label-Preserving Data Augmentation with Diffusion Models [18.44432223381586]
近年、ディープニューラルネットワークの一般化を改善するために、画像混合に基づく拡張技術が数多く導入されている。
これらの手法では、2つ以上のランダムに選択された自然画像が混合され、拡張画像を生成する。
DiffuseMixを提案する。DiffuseMixは、拡散モデルを利用してトレーニング画像を再構成する新しいデータ拡張手法である。
論文 参考訳(メタデータ) (2024-04-05T05:31:02Z) - Enhance Image Classification via Inter-Class Image Mixup with Diffusion Model [80.61157097223058]
画像分類性能を高めるための一般的な戦略は、T2Iモデルによって生成された合成画像でトレーニングセットを増強することである。
本研究では,既存のデータ拡張技術の欠点について検討する。
Diff-Mixと呼ばれる革新的なクラス間データ拡張手法を導入する。
論文 参考訳(メタデータ) (2024-03-28T17:23:45Z) - TransformMix: Learning Transformation and Mixing Strategies from Data [20.79680733590554]
我々は、データからより良い変換と拡張戦略を混合するための自動アプローチであるTransformMixを提案する。
本稿では,トランスフォーメーション学習,分類,オブジェクト検出,知識蒸留設定におけるTransformMixの有効性を示す。
論文 参考訳(メタデータ) (2024-03-19T04:36:41Z) - SpliceMix: A Cross-scale and Semantic Blending Augmentation Strategy for
Multi-label Image Classification [46.8141860303439]
マルチラベル画像分類,すなわちSpliceMixの簡易かつ効果的な拡張戦略を提案する。
本手法の「スプライス」は,1) 混合画像は, 混合に係わる画像のセマンティクスを, 共起バイアスを緩和するためのオブジェクト欠陥を伴わずにブレンドするグリッドの形で, 縮小された画像のスプライスであり, 2) 混合画像と元のミニバッチをスプリスして, 異なるスケールの画像を同時にトレーニングに寄与するSpliceMixed mini-batchを形成する。
論文 参考訳(メタデータ) (2023-11-26T05:45:27Z) - GuidedMixup: An Efficient Mixup Strategy Guided by Saliency Maps [6.396288020763144]
本稿では,計算オーバーヘッドの少ない混合画像における局所領域の維持を目的とした GuidedMixup を提案する。
我々は,ペア画像の健全な領域の競合を最小限に抑えるために,効率的なペアリングアルゴリズムを開発した。
いくつかのデータセットの実験では、 GuidedMixupがオーバヘッドの増大と一般化のパフォーマンスのトレードオフとして優れていることが示されている。
論文 参考訳(メタデータ) (2023-06-29T00:55:51Z) - PromptMix: Text-to-image diffusion models enhance the performance of
lightweight networks [83.08625720856445]
ディープラーニングタスクは、人間のオペレーターに時間がかかりすぎるアノテーションを必要とする。
本稿では,既存のデータセットのサイズを人工的に向上するPromptMixを紹介する。
PromptMixは軽量ネットワークの性能を最大26%向上させることができることを示す。
論文 参考訳(メタデータ) (2023-01-30T14:15:47Z) - CropMix: Sampling a Rich Input Distribution via Multi-Scale Cropping [97.05377757299672]
そこで本研究では,元のデータセット分布からリッチな入力分布を生成するための簡単なCropMixを提案する。
CropMixは、分類タスクを実行するトレーニングレシピやニューラルネットワークアーキテクチャにシームレスに適用することができる。
CropMixは、より強力な表現に向けて、対照的な学習とマスクされた画像モデリングの両方に利益があることを示す。
論文 参考訳(メタデータ) (2022-05-31T16:57:28Z) - Image Classification on Small Datasets via Masked Feature Mixing [22.105356244579745]
ChimeraMixと呼ばれるアーキテクチャは、インスタンスの合成を生成することによってデータ拡張を学習する。
生成モデルは、画像をペアにエンコードし、マスクでガイドされた特徴を組み合わせて、新しいサンプルを作成する。
評価のために、すべてのメソッドは追加データなしでスクラッチからトレーニングされる。
論文 参考訳(メタデータ) (2022-02-23T16:51:22Z) - Mixture Model Auto-Encoders: Deep Clustering through Dictionary Learning [72.9458277424712]
Mixture Model Auto-Encoders (MixMate)は、生成モデルで推論を実行することでデータをクラスタリングする新しいアーキテクチャである。
最先端のディープクラスタリングアルゴリズムと比較して,MixMateは競争性能が高いことを示す。
論文 参考訳(メタデータ) (2021-10-10T02:30:31Z) - SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained
Data [124.95585891086894]
提案はSemantically Proportional Mixing(SnapMix)と呼ばれる
クラスアクティベーションマップ(CAM)を利用して、きめ細かいデータを強化する際にラベルノイズを低減します。
本手法は既存の混合型アプローチを一貫して上回っている。
論文 参考訳(メタデータ) (2020-12-09T03:37:30Z) - Mixup-Transformer: Dynamic Data Augmentation for NLP Tasks [75.69896269357005]
Mixupは、入力例と対応するラベルを線形に補間する最新のデータ拡張技術である。
本稿では,自然言語処理タスクにmixupを適用する方法について検討する。
我々は、様々なNLPタスクに対して、mixup-transformerと呼ばれる、トランスフォーマーベースの事前学習アーキテクチャにmixupを組み込んだ。
論文 参考訳(メタデータ) (2020-10-05T23:37:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。