論文の概要: Sequential PatchCore: Anomaly Detection for Surface Inspection using Synthetic Impurities
- arxiv url: http://arxiv.org/abs/2501.09579v1
- Date: Thu, 16 Jan 2025 14:56:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:10:57.979917
- Title: Sequential PatchCore: Anomaly Detection for Surface Inspection using Synthetic Impurities
- Title(参考訳): PatchCore:合成不純物を用いた表面検査の異常検出
- Authors: Runzhou Mao, Juraj Fulir, Christoph Garth, Petra Gospodnetić,
- Abstract要約: 本研究は, 合成データ生成における不純物の検討の重要性を強調した。
合成データに水染色を含む手続き的手法を提案する。
合成データセットは実際のデータセットに対応するように生成され、さらに異常検出モデルのトレーニングに使用される。
- 参考スコア(独自算出の注目度): 2.407410849204191
- License:
- Abstract: The appearance of surface impurities (e.g., water stains, fingerprints, stickers) is an often-mentioned issue that causes degradation of automated visual inspection systems. At the same time, synthetic data generation techniques for visual surface inspection have focused primarily on generating perfect examples and defects, disregarding impurities. This study highlights the importance of considering impurities when generating synthetic data. We introduce a procedural method to include photorealistic water stains in synthetic data. The synthetic datasets are generated to correspond to real datasets and are further used to train an anomaly detection model and investigate the influence of water stains. The high-resolution images used for surface inspection lead to memory bottlenecks during anomaly detection training. To address this, we introduce Sequential PatchCore - a method to build coresets sequentially and make training on large images using consumer-grade hardware tractable. This allows us to perform transfer learning using coresets pre-trained on different dataset versions. Our results show the benefits of using synthetic data for pre-training an explicit coreset anomaly model and the extended performance benefits of finetuning the coreset using real data. We observed how the impurities and labelling ambiguity lower the model performance and have additionally reported the defect-wise recall to provide an industrially relevant perspective on model performance.
- Abstract(参考訳): 表面の不純物(水の汚れ、指紋、ステッカーなど)の出現は、自動視覚検査システムの劣化を引き起こすことが多い問題である。
同時に、視覚面検査のための合成データ生成技術は、主に不純物を無視した完璧な例と欠陥を生成することに焦点を当てている。
本研究は, 合成データ生成における不純物の検討の重要性を強調した。
合成データに光現実的な水染色を含む手続き的手法を提案する。
合成データセットは実際のデータセットに対応するように生成され、さらに異常検出モデルを訓練し、水の汚れの影響を調べるために使用される。
表面検査に用いる高解像度画像は、異常検出訓練中にメモリボトルネックを引き起こす。
これに対処するために、Sequential PatchCore – コアセットをシーケンシャルに構築し、コンシューマグレードのハードウェアトラクタを使用して、大規模なイメージのトレーニングを行う方法を紹介します。
これにより、異なるデータセットバージョンで事前トレーニングされたコアセットを使用して、転送学習を実行できます。
本研究は,コアセット異常モデルの事前学習に合成データを用いることの利点と,実データを用いたコアセットの微調整による性能向上効果を示す。
我々は,不純物やラベルのあいまいさがモデル性能を低下させる様子を観察し,また,モデル性能に関して産業的に関係のある視点を提供するために,欠陥的リコールを報告した。
関連論文リスト
- SYNOSIS: Image synthesis pipeline for machine vision in metal surface inspection [1.1802456989915404]
本研究では,表面検査のための画像合成手法を詳細に記述した完全なパイプラインを提案する。
パイプラインは、加工およびサンドブラスト加工されたアルミニウム表面に対して詳細に評価されている。
論文 参考訳(メタデータ) (2024-10-18T19:46:12Z) - Synthetic Image Learning: Preserving Performance and Preventing Membership Inference Attacks [5.0243930429558885]
本稿では,下流分類器の学習のための合成データの生成と利用を最適化するパイプラインである知識リサイクル(KR)を紹介する。
このパイプラインの核心は生成的知識蒸留(GKD)であり、情報の品質と有用性を大幅に向上させる技術が提案されている。
その結果、実データと合成データでトレーニングされたモデルと、実データでトレーニングされたモデルとの性能差が著しく低下した。
論文 参考訳(メタデータ) (2024-07-22T10:31:07Z) - Mind the Gap Between Synthetic and Real: Utilizing Transfer Learning to Probe the Boundaries of Stable Diffusion Generated Data [2.6016285265085526]
学生モデルは、実際のデータで訓練されたモデルと比較して、精度が著しく低下している。
実データまたは合成データを用いてこれらのレイヤをトレーニングすることにより、ドロップが主にモデルの最終的なレイヤに由来することを明らかにする。
この結果から,実際のトレーニングデータの量とモデルの精度とのトレードオフの改善が示唆された。
論文 参考訳(メタデータ) (2024-05-06T07:51:13Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
本稿では,DAF(Disdisrepancy Aware Framework)を提案する。
本手法は,デコーダの欠陥同定に外見に依存しないキューを利用して,その合成外観への依存を緩和する。
単純な合成戦略の下では,既存の手法を大きなマージンで上回り,また,最先端のローカライゼーション性能も達成している。
論文 参考訳(メタデータ) (2023-10-11T15:21:40Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
本稿では,フラットな軌道を求める最適化アルゴリズムを提案する。
合成データに基づいてトレーニングされた重みは、平坦な軌道への正規化を伴う累積誤差摂動に対して頑健であることを示す。
本手法はFTD (Flat Trajectory Distillation) と呼ばれ, 勾配整合法の性能を最大4.7%向上させる。
論文 参考訳(メタデータ) (2022-11-20T15:49:11Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
各センサの信号の挙動を別々に検討し,相互の相関関係と隠れ関係を考慮する必要がある。
グラフノードは、異なるセンサーからのデータとして表現することができ、エッジは、これらのデータの影響を互いに表示することができる。
グラフニューラルネットワークのトレーニング中にグラフを構築する方法が提案されている。これにより、センサー間の依存関係が事前に分かっていないデータ上でモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2022-10-20T11:03:21Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
本研究では,最新のテキスト・画像生成モデルから生成した合成画像が,画像認識タスクにどのように利用できるかを検討した。
本稿では,既存の生成モデルからの合成データの強大さと欠点を示し,認識タスクに合成データを適用するための戦略を提案する。
論文 参考訳(メタデータ) (2022-10-14T06:54:24Z) - Synthetic Data for Model Selection [2.4499092754102874]
合成データはモデル選択に有用であることを示す。
そこで本研究では,実領域に適合する合成誤差推定をキャリブレーションする新しい手法を提案する。
論文 参考訳(メタデータ) (2021-05-03T09:52:03Z) - Synthetic training data generation for deep learning based quality
inspection [0.0]
欠陥のある部分や正常な部分(欠陥のない部分)の画像を描画する汎用的なシミュレーションパイプラインを提案する。
深層学習ネットワークを訓練し、製造元からの実データでテストすることで、生成した画像の品質を評価する。
論文 参考訳(メタデータ) (2021-04-07T08:07:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。