論文の概要: The Heap: A Contamination-Free Multilingual Code Dataset for Evaluating Large Language Models
- arxiv url: http://arxiv.org/abs/2501.09653v1
- Date: Thu, 16 Jan 2025 16:48:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:11:44.180141
- Title: The Heap: A Contamination-Free Multilingual Code Dataset for Evaluating Large Language Models
- Title(参考訳): ヒープ:大規模言語モデル評価のための汚染のない多言語コードデータセット
- Authors: Jonathan Katzy, Razvan Mihai Popescu, Arie van Deursen, Maliheh Izadi,
- Abstract要約: 57のプログラミング言語をカバーする大規模な多言語データセットであるThe Heapをリリースする。
このデータセットにより、研究者は大きな言語モデルの公正な評価を、大きなデータのクリーニングオーバーヘッドなしに行うことができる。
- 参考スコア(独自算出の注目度): 13.134215997081157
- License:
- Abstract: The recent rise in the popularity of large language models has spurred the development of extensive code datasets needed to train them. This has left limited code available for collection and use in the downstream investigation of specific behaviors, or evaluation of large language models without suffering from data contamination. To address this problem, we release The Heap, a large multilingual dataset covering 57 programming languages that has been deduplicated with respect to other open datasets of code, enabling researchers to conduct fair evaluations of large language models without significant data cleaning overhead.
- Abstract(参考訳): 近年の大規模言語モデルの普及により、トレーニングに必要な広範なコードデータセットの開発が加速した。
これにより、特定の振る舞いの下流の調査や、データ汚染に悩まされることなく大規模言語モデルの評価において、限られたコードを収集および使用することが可能になった。
この問題に対処するため、私たちは、57のプログラミング言語をカバーする大規模な多言語データセットであるThe Heapをリリースした。
関連論文リスト
- Forcing Diffuse Distributions out of Language Models [70.28345569190388]
ユーザ命令に従うように特別に訓練されているにもかかわらず、今日の命令付き言語モデルは、ランダムな出力を生成するように指示された場合、性能が良くない。
本稿では,言語モデルに有効な結果に対して拡散した分布を出力することを奨励する微調整手法を提案する。
論文 参考訳(メタデータ) (2024-04-16T19:17:23Z) - Language Models on a Diet: Cost-Efficient Development of Encoders for Closely-Related Languages via Additional Pretraining [4.38070902806635]
クロアチア語、セルビア語、ボスニア語、モンテネグロ語のベンチマークを設定しました。
我々は、利用可能な多言語モデルの追加事前学習により、専用のin-scratchモデルに匹敵する性能が得られることを示す。
また、Slovenianの場合、隣接する言語は、最終モデルの性能にほとんど、あるいは全く損なわない追加の事前訓練に含めることができることを示す。
論文 参考訳(メタデータ) (2024-04-08T11:55:44Z) - ColBERT-XM: A Modular Multi-Vector Representation Model for Zero-Shot
Multilingual Information Retrieval [10.664434993386523]
現在のアプローチは、非英語言語における高品質なラベル付きデータの欠如を回避している。
本稿では,単一の高リソース言語のリッチデータから学習するモジュール型高密度検索モデルを提案する。
論文 参考訳(メタデータ) (2024-02-23T02:21:24Z) - Traces of Memorisation in Large Language Models for Code [16.125924759649106]
コードのための大規模な言語モデルは、一般にインターネットから取り除かれた大量のソースコードコーパスで訓練される。
記憶の速度を、自然言語で訓練された大きな言語モデルと比較する。
コードのための大きな言語モデルは、自然言語のようなデータ抽出攻撃に弱いことが分かりました。
論文 参考訳(メタデータ) (2023-12-18T19:12:58Z) - Evaluating Large Language Models on Controlled Generation Tasks [92.64781370921486]
本稿では,異なる粒度を持つ文計画ベンチマークを含む,様々なベンチマークを広範囲に分析する。
大規模言語モデルと最先端の微調整された小型モデルを比較した後、大規模言語モデルが後方に落ちたり、比較されたり、より小型モデルの能力を超えたりしたスペクトルを示す。
論文 参考訳(メタデータ) (2023-10-23T03:48:24Z) - CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large
Language Models in 167 Languages [86.90220551111096]
大規模言語モデル(LLM)のトレーニングデータセットは、完全には公開されないことが多い。
我々は167言語で6.3兆のトークンを持つ相当な多言語データセットであるCulturaXを紹介する。
論文 参考訳(メタデータ) (2023-09-17T23:49:10Z) - Multi-lingual Evaluation of Code Generation Models [82.7357812992118]
本稿では,MBXPとMultilingual HumanEval,MathQA-Xという,評価コード生成モデルに関する新しいベンチマークを提案する。
これらのデータセットは10以上のプログラミング言語をカバーする。
コード生成モデルの性能を多言語で評価することができる。
論文 参考訳(メタデータ) (2022-10-26T17:17:06Z) - When Being Unseen from mBERT is just the Beginning: Handling New
Languages With Multilingual Language Models [2.457872341625575]
大量の生データに基づく事前学習言語モデルに基づく伝達学習は,NLPの最先端性能に到達するための新しい規範となっている。
このようなモデルは、目に見えない言語に対して複数の方法で振る舞うことを示す。
論文 参考訳(メタデータ) (2020-10-24T10:15:03Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z) - Limits of Detecting Text Generated by Large-Scale Language Models [65.46403462928319]
誤情報キャンペーンで使用される可能性があるため、長く一貫性のあるテキストを生成できる大規模な言語モデルが危険であると考える者もいる。
ここでは、仮説テスト問題として大規模言語モデル出力検出を定式化し、テキストを真あるいは生成されたものと分類する。
論文 参考訳(メタデータ) (2020-02-09T19:53:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。