Authenticated Delegation and Authorized AI Agents
- URL: http://arxiv.org/abs/2501.09674v1
- Date: Thu, 16 Jan 2025 17:11:21 GMT
- Title: Authenticated Delegation and Authorized AI Agents
- Authors: Tobin South, Samuele Marro, Thomas Hardjono, Robert Mahari, Cedric Deslandes Whitney, Dazza Greenwood, Alan Chan, Alex Pentland,
- Abstract summary: We introduce a novel framework for authenticated, authorized, and auditable delegation of authority to AI agents.
We propose a framework for translating flexible, natural language permissions into auditable access control configurations.
- Score: 4.679384754914167
- License:
- Abstract: The rapid deployment of autonomous AI agents creates urgent challenges around authorization, accountability, and access control in digital spaces. New standards are needed to know whom AI agents act on behalf of and guide their use appropriately, protecting online spaces while unlocking the value of task delegation to autonomous agents. We introduce a novel framework for authenticated, authorized, and auditable delegation of authority to AI agents, where human users can securely delegate and restrict the permissions and scope of agents while maintaining clear chains of accountability. This framework builds on existing identification and access management protocols, extending OAuth 2.0 and OpenID Connect with agent-specific credentials and metadata, maintaining compatibility with established authentication and web infrastructure. Further, we propose a framework for translating flexible, natural language permissions into auditable access control configurations, enabling robust scoping of AI agent capabilities across diverse interaction modalities. Taken together, this practical approach facilitates immediate deployment of AI agents while addressing key security and accountability concerns, working toward ensuring agentic AI systems perform only appropriate actions and providing a tool for digital service providers to enable AI agent interactions without risking harm from scalable interaction.
Related papers
- Governing the Agent-to-Agent Economy of Trust via Progressive Decentralization [0.0]
I propose a research agenda to address the question of agent-to-agent trust using AgentBound Tokens.
By staking ABTs as collateral for autonomous actions within an agent-to-agent network via a proof-of-stake mechanism, agents may be incentivized towards ethical behavior.
arXiv Detail & Related papers (2025-01-28T00:50:35Z) - Infrastructure for AI Agents [3.373674048991415]
AI systems can plan and execute interactions in open-ended environments, such as making phone calls or buying online goods.
Current tools are largely insufficient because they are not designed to shape how agents interact with existing institutions.
We propose the concept of agent infrastructure: technical systems and shared protocols external to agents.
arXiv Detail & Related papers (2025-01-17T10:58:12Z) - Governing AI Agents [0.2913760942403036]
Article looks at the economic theory of principal-agent problems and the common law doctrine of agency relationships.
It identifies problems arising from AI agents, including issues of information asymmetry, discretionary authority, and loyalty.
It argues that new technical and legal infrastructure is needed to support governance principles of inclusivity, visibility, and liability.
arXiv Detail & Related papers (2025-01-14T07:55:18Z) - Agent-as-a-Judge: Evaluate Agents with Agents [61.33974108405561]
We introduce the Agent-as-a-Judge framework, wherein agentic systems are used to evaluate agentic systems.
This is an organic extension of the LLM-as-a-Judge framework, incorporating agentic features that enable intermediate feedback for the entire task-solving process.
We present DevAI, a new benchmark of 55 realistic automated AI development tasks.
arXiv Detail & Related papers (2024-10-14T17:57:02Z) - Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement [117.94654815220404]
G"odel Agent is a self-evolving framework inspired by the G"odel machine.
G"odel Agent can achieve continuous self-improvement, surpassing manually crafted agents in performance, efficiency, and generalizability.
arXiv Detail & Related papers (2024-10-06T10:49:40Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - CACA Agent: Capability Collaboration based AI Agent [18.84686313298908]
We propose CACA Agent (Capability Collaboration based AI Agent) using an open architecture inspired by service computing.
CACA Agent integrates a set of collaborative capabilities to implement AI Agents, not only reducing the dependence on a single LLM.
We present a demo to illustrate the operation and the application scenario extension of CACA Agent.
arXiv Detail & Related papers (2024-03-22T11:42:47Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScope is a developer-centric multi-agent platform with message exchange as its core communication mechanism.
The abundant syntactic tools, built-in agents and service functions, user-friendly interfaces for application demonstration and utility monitor, zero-code programming workstation, and automatic prompt tuning mechanism significantly lower the barriers to both development and deployment.
arXiv Detail & Related papers (2024-02-21T04:11:28Z) - Coordinating Policies Among Multiple Agents via an Intelligent
Communication Channel [81.39444892747512]
In Multi-Agent Reinforcement Learning (MARL), specialized channels are often introduced that allow agents to communicate directly with one another.
We propose an alternative approach whereby agents communicate through an intelligent facilitator that learns to sift through and interpret signals provided by all agents to improve the agents' collective performance.
arXiv Detail & Related papers (2022-05-21T14:11:33Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI developers need to make verifiable claims to which they can be held accountable.
This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems.
We analyze ten mechanisms for this purpose--spanning institutions, software, and hardware--and make recommendations aimed at implementing, exploring, or improving those mechanisms.
arXiv Detail & Related papers (2020-04-15T17:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.