Large-Range Tuning and Stabilization of the Optical Transition of Diamond Tin-Vacancy Centers by In-Situ Strain Control
- URL: http://arxiv.org/abs/2501.09788v1
- Date: Thu, 16 Jan 2025 19:00:01 GMT
- Title: Large-Range Tuning and Stabilization of the Optical Transition of Diamond Tin-Vacancy Centers by In-Situ Strain Control
- Authors: Julia M. Brevoord, Leonardo G. C. Wienhoven, Nina Codreanu, Tetsuro Ishiguro, Elvis van Leeuwen, Mariagrazia Iuliano, Lorenzo De Santis, Christopher Waas, Hans K. C. Beukers, Tim Turan, Carlos Errando-Herranz, Kenichi Kawaguchi, Ronald Hanson,
- Abstract summary: We report on the large-range optical frequency tuning of diamond SnV- centers using micro-electro-mechanically mediated strain control.
These results provide a path for on-chip scaling of diamond SnV-based quantum networks.
- Score: 0.0
- License:
- Abstract: The negatively charged tin-vacancy (SnV-) center in diamond has emerged as a promising platform for quantum computing and quantum networks. To connect SnV- qubits in large networks, in-situ tuning and stabilization of their optical transitions are essential to overcome static and dynamic frequency offsets induced by the local environment. Here we report on the large-range optical frequency tuning of diamond SnV- centers using micro-electro-mechanically mediated strain control in photonic integrated waveguide devices. We realize a tuning range of >40 GHz, covering a major part of the inhomogeneous distribution. In addition, we employ real-time feedback on the strain environment to stabilize the resonant frequency and mitigate spectral wandering. These results provide a path for on-chip scaling of diamond SnV-based quantum networks.
Related papers
- Coherent Coupling of a Diamond Tin-Vacancy Center to a Tunable Open Microcavity [0.0]
We present a quantum photonic interface based on a single Tin-Vacancy center in a micrometer-thin diamond membrane coupled to a tunable open microcavity.
We observe a transmission dip of 50 % for low incident photon number per Purcell-reduced excited state lifetime, while the dip disappears as the emitter is saturated with higher photon number.
This work establishes a versatile and tunable platform for advanced quantum optics experiments and proof-of-principle demonstrations towards quantum networking with solid-state qubits.
arXiv Detail & Related papers (2023-11-14T19:00:02Z) - Microwave-based quantum control and coherence protection of tin-vacancy
spin qubits in a strain-tuned diamond membrane heterostructure [54.501132156894435]
Tin-vacancy center (SnV) in diamond is a promising spin-photon interface with desirable optical and spin properties at 1.7 K.
We introduce a new platform that overcomes these challenges - SnV centers in uniformly strained thin diamond membranes.
The presence of crystal strain suppresses temperature dependent dephasing processes, leading to a considerable improvement of the coherence time up to 223 $mu$s at 4 K.
arXiv Detail & Related papers (2023-07-21T21:40:21Z) - Two-stage, low noise quantum frequency conversion of single photons from
silicon-vacancy centers in diamond to the telecom C-band [0.0]
This work presents a highly efficient, low-noise quantum frequency conversion device for photons emitted by a silicon-vacancy center in diamond to the telecom C-band.
By using a two-stage difference-frequency mixing scheme SPDC noise is circumvented and Raman noise is minimized, resulting in a very low noise rate of $10.4 pm 0.7$ photons per second.
arXiv Detail & Related papers (2023-07-21T07:00:18Z) - Low-noise quantum frequency conversion in a monolithic cavity with bulk
periodically poled potassium titanyl phosphate [0.0]
Nitrogen-vacancy centers in diamond are a leading candidate to form the nodes of a quantum network.
We demonstrate a new platform for efficient low-noise quantum frequency conversion based on a monolithic bulk ppKTP cavity.
By resonantly enhancing the power of an off-the-shelf pump laser, we achieve an internal conversion efficiency of $(72.3pm 0.4)%$ while generating only $(110pm 4) mbox kHz/nm$ noise at the target wavelength.
arXiv Detail & Related papers (2023-04-26T11:32:33Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Asymmetric Inductive eLement)
We have excited photons near this Kerr-free point and characterized the device using a transmon qubit.
arXiv Detail & Related papers (2022-10-18T09:55:58Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Telecom-band quantum interference of frequency-converted photons from
remote detuned NV centers [0.0]
Entanglement over quantum networks has the promise of realizing fundamentally new technologies.
To move towards metropolitan-scale quantum network test beds, the creation and transmission of indistinguishable single photons over existing telecom infrastructure is key.
We report the interference of photons emitted by remote, spectrally detuned NV center-based network nodes, using quantum frequency conversion to the telecom L-band.
arXiv Detail & Related papers (2022-01-31T19:01:01Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z) - Narrow-linewidth tin-vacancy centers in a diamond waveguide [5.229236508805071]
Negatively charged tin-vacancy (SnV$-$) centers in diamond have emerged as promising candidates for quantum emitters.
We demonstrate the coupling of SnV$-$ centers to a nanophotonic waveguide.
arXiv Detail & Related papers (2020-05-20T22:55:03Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.