論文の概要: Empirical Evaluation of Embedding Models in the Context of Text Classification in Document Review in Construction Delay Disputes
- arxiv url: http://arxiv.org/abs/2501.09859v1
- Date: Thu, 16 Jan 2025 22:12:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 13:56:58.703394
- Title: Empirical Evaluation of Embedding Models in the Context of Text Classification in Document Review in Construction Delay Disputes
- Title(参考訳): 建設遅延問題における文書レビューにおけるテキスト分類の文脈における埋め込みモデルの実証評価
- Authors: Fusheng Wei, Robert Neary, Han Qin, Qiang Mao, Jianping Zhang,
- Abstract要約: テキスト埋め込みはテキストデータの数値表現であり、単語、フレーズ、文書全体を実数のベクトルに変換する。
本稿では,4つの異なるモデルの包括的比較分析を通じて,異なる埋め込みを評価する作業について述べる。
K-Nearest Neighbors (KNN) と Logistic Regression (LR) の両方を用いてバイナリ分類タスクを行い、特にラベル付きデータセット内でテキストスニペットが 'delay' あるいは 'not delay' に関連付けられているかどうかを判断する。
- 参考スコア(独自算出の注目度): 6.076874513889027
- License:
- Abstract: Text embeddings are numerical representations of text data, where words, phrases, or entire documents are converted into vectors of real numbers. These embeddings capture semantic meanings and relationships between text elements in a continuous vector space. The primary goal of text embeddings is to enable the processing of text data by machine learning models, which require numerical input. Numerous embedding models have been developed for various applications. This paper presents our work in evaluating different embeddings through a comprehensive comparative analysis of four distinct models, focusing on their text classification efficacy. We employ both K-Nearest Neighbors (KNN) and Logistic Regression (LR) to perform binary classification tasks, specifically determining whether a text snippet is associated with 'delay' or 'not delay' within a labeled dataset. Our research explores the use of text snippet embeddings for training supervised text classification models to identify delay-related statements during the document review process of construction delay disputes. The results of this study highlight the potential of embedding models to enhance the efficiency and accuracy of document analysis in legal contexts, paving the way for more informed decision-making in complex investigative scenarios.
- Abstract(参考訳): テキスト埋め込みはテキストデータの数値表現であり、単語、フレーズ、文書全体を実数のベクトルに変換する。
これらの埋め込みは連続ベクトル空間におけるテキスト要素間の意味的意味と関係をキャプチャする。
テキスト埋め込みの第一の目的は、数値入力を必要とする機械学習モデルによるテキストデータの処理を可能にすることである。
様々な用途に多くの埋め込みモデルが開発されている。
本稿では,4つの異なるモデルの包括的比較分析を通じて,テキスト分類の有効性に焦点をあてて,異なる埋め込みを評価する作業について述べる。
K-Nearest Neighbors (KNN) と Logistic Regression (LR) の両方を用いてバイナリ分類タスクを行い、特にラベル付きデータセット内でテキストスニペットが 'delay' あるいは 'not delay' に関連付けられているかどうかを判断する。
本研究は,建設遅延紛争の文書レビュー過程における遅延関連文の識別を目的とした,教師付きテキスト分類モデルの訓練用テキストスニペット埋め込みについて検討する。
本研究は, 法的文脈における文書解析の効率性と精度を高めるための埋め込みモデルの可能性を強調し, 複雑な調査シナリオにおいて, より深い意思決定を行うための道を開くものである。
関連論文リスト
- Towards Unified Multi-granularity Text Detection with Interactive Attention [56.79437272168507]
Detect Any Text"は、シーンテキストの検出、レイアウト分析、ドキュメントページの検出を結合的なエンドツーエンドモデルに統合する高度なパラダイムである。
DATにおける重要なイノベーションは、テキストインスタンスの表現学習を大幅に強化する、粒度横断型アテンションモジュールである。
テストによると、DATは様々なテキスト関連ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-05-30T07:25:23Z) - Detecting Statements in Text: A Domain-Agnostic Few-Shot Solution [1.3654846342364308]
最先端のアプローチは通常、作成にコストがかかる大規模な注釈付きデータセット上の微調整モデルを含む。
本稿では,クレームに基づくテキスト分類タスクの共通パラダイムとして,定性的で多目的な少ショット学習手法の提案とリリースを行う。
本手法は,気候変動対策,トピック/スタンス分類,うつ病関連症状検出の3つの課題の文脈で説明する。
論文 参考訳(メタデータ) (2024-05-09T12:03:38Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
テキスト埋め込みモデルが幅広い構文的文脈にまたがって一般化する能力は、まだ解明されていない。
その結果,既存のテキスト埋め込みモデルは,これらの構文的理解課題に十分対応していないことが明らかとなった。
多様な構文シナリオにおけるテキスト埋め込みモデルの一般化能力を高めるための戦略を提案する。
論文 参考訳(メタデータ) (2023-11-14T08:51:00Z) - MISMATCH: Fine-grained Evaluation of Machine-generated Text with
Mismatch Error Types [68.76742370525234]
テキスト間のきめ細かいミスマッチに基づいて、7つのNLPタスクにおける人間の判断をモデル化する新しい評価手法を提案する。
細粒度評価のためのNLPタスクの最近の取り組みに触発されて,13種類のミスマッチエラータイプを紹介した。
7つのNLPタスクから得られた有意なデータセットの文対間のミスマッチ誤差は,人間の評価とよく一致している。
論文 参考訳(メタデータ) (2023-06-18T01:38:53Z) - Joint Representations of Text and Knowledge Graphs for Retrieval and
Evaluation [15.55971302563369]
ニューラルネットワークの重要な特徴は、オブジェクト(テキスト、画像、スピーチなど)のセマンティックなベクトル表現を生成し、類似したオブジェクトがベクトル空間内で互いに近接していることを保証することである。
多くの研究は、他のモダリティの表現の学習に焦点を合わせてきたが、テキストや知識ベース要素の整列したクロスモーダル表現は存在しない。
論文 参考訳(メタデータ) (2023-02-28T17:39:43Z) - Revisiting text decomposition methods for NLI-based factuality scoring
of summaries [9.044665059626958]
細粒度分解が必ずしも事実性スコアの勝利戦略であるとは限らないことを示す。
また,従来提案されていたエンテーメントに基づくスコアリング手法の小さな変更により,性能が向上することを示した。
論文 参考訳(メタデータ) (2022-11-30T09:54:37Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Twitterで公開された短いテキストは、豊富な情報源として大きな注目を集めている。
非公式な言語スタイルや騒々しい言語スタイルといったそれらの固有の特徴は、多くの自然言語処理(NLP)タスクに挑戦し続けている。
本研究では,22データセットの豊富なコレクションを用いて,ツイートに表される感情を識別する既存言語モデルの評価を行った。
論文 参考訳(メタデータ) (2021-05-29T21:05:28Z) - Syntax-Enhanced Pre-trained Model [49.1659635460369]
BERTやRoBERTaなどの学習済みモデルを強化するために、テキストの構文構造を活用するという問題を研究する。
既存の手法では、事前学習段階または微調整段階のいずれかでテキストの構文を利用しており、両者の区別に苦しむ。
事前学習と微調整の両方の段階でテキストのシンタックスを利用するモデルを提示する。
論文 参考訳(メタデータ) (2020-12-28T06:48:04Z) - Neural Deepfake Detection with Factual Structure of Text [78.30080218908849]
テキストのディープフェイク検出のためのグラフベースモデルを提案する。
我々のアプローチは、ある文書の事実構造をエンティティグラフとして表現する。
本モデルでは,機械生成テキストと人文テキストの事実構造の違いを識別することができる。
論文 参考訳(メタデータ) (2020-10-15T02:35:31Z) - Two-Level Transformer and Auxiliary Coherence Modeling for Improved Text
Segmentation [9.416757363901295]
単純だが明示的なコヒーレンスモデリングを用いたテキストセグメンテーションのための新しい教師付きモデルを提案する。
我々のモデルは、2つの階層的に連結されたトランスフォーマーネットワークからなるニューラルネットワークであり、文レベルのセグメンテーション目標と、正しい文列と腐敗した文列を区別するコヒーレンス目標を結合するマルチタスク学習モデルである。
論文 参考訳(メタデータ) (2020-01-03T17:06:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。