Sparse Binary Representation Learning for Knowledge Tracing
- URL: http://arxiv.org/abs/2501.09893v1
- Date: Fri, 17 Jan 2025 00:45:10 GMT
- Title: Sparse Binary Representation Learning for Knowledge Tracing
- Authors: Yahya Badran, Christine Preisach,
- Abstract summary: Knowledge tracing (KT) models aim to predict students' future performance based on their historical interactions.
Most existing KT models rely exclusively on human-defined knowledge concepts associated with exercises.
We propose a KT model, Sparse Binary Representation KT (SBRKT), that generates new KC labels, referred to as auxiliary KCs.
- Score: 0.0
- License:
- Abstract: Knowledge tracing (KT) models aim to predict students' future performance based on their historical interactions. Most existing KT models rely exclusively on human-defined knowledge concepts (KCs) associated with exercises. As a result, the effectiveness of these models is highly dependent on the quality and completeness of the predefined KCs. Human errors in labeling and the cost of covering all potential underlying KCs can limit model performance. In this paper, we propose a KT model, Sparse Binary Representation KT (SBRKT), that generates new KC labels, referred to as auxiliary KCs, which can augment the predefined KCs to address the limitations of relying solely on human-defined KCs. These are learned through a binary vector representation, where each bit indicates the presence (one) or absence (zero) of an auxiliary KC. The resulting discrete representation allows these auxiliary KCs to be utilized in training any KT model that incorporates KCs. Unlike pre-trained dense embeddings, which are limited to models designed to accept such vectors, our discrete representations are compatible with both classical models, such as Bayesian Knowledge Tracing (BKT), and modern deep learning approaches. To generate this discrete representation, SBRKT employs a binarization method that learns a sparse representation, fully trainable via stochastic gradient descent. Additionally, SBRKT incorporates a recurrent neural network (RNN) to capture temporal dynamics and predict future student responses by effectively combining the auxiliary and predefined KCs. Experimental results demonstrate that SBRKT outperforms the tested baselines on several datasets and achieves competitive performance on others. Furthermore, incorporating the learned auxiliary KCs consistently enhances the performance of BKT across all tested datasets.
Related papers
- Revisiting Applicable and Comprehensive Knowledge Tracing in Large-Scale Data [2.979487471903892]
Knowledge Tracing (KT) is a fundamental component of Intelligent Tutoring Systems (ITS)
We propose DKT2, a novel KT model that leverages the recently developed xLSTM architecture.
Extensive experiments conducted across three large-scale datasets demonstrate that DKT2 consistently outperforms 17 baseline models in various prediction tasks.
arXiv Detail & Related papers (2025-01-24T05:44:04Z) - Automated Knowledge Concept Annotation and Question Representation Learning for Knowledge Tracing [59.480951050911436]
We present KCQRL, a framework for automated knowledge concept annotation and question representation learning.
We demonstrate the effectiveness of KCQRL across 15 KT algorithms on two large real-world Math learning datasets.
arXiv Detail & Related papers (2024-10-02T16:37:19Z) - Improving Low-Resource Knowledge Tracing Tasks by Supervised Pre-training and Importance Mechanism Fine-tuning [25.566963415155325]
We propose a low-resource KT framework called LoReKT to address above challenges.
Inspired by the prevalent "pre-training and fine-tuning" paradigm, we aim to learn transferable parameters and representations from rich-resource KT datasets.
We design an encoding mechanism to incorporate student interactions from multiple KT data sources.
arXiv Detail & Related papers (2024-03-11T13:44:43Z) - Learning disentangled representations for explainable chest X-ray
classification using Dirichlet VAEs [68.73427163074015]
This study explores the use of the Dirichlet Variational Autoencoder (DirVAE) for learning disentangled latent representations of chest X-ray (CXR) images.
The predictive capacity of multi-modal latent representations learned by DirVAE models is investigated through implementation of an auxiliary multi-label classification task.
arXiv Detail & Related papers (2023-02-06T18:10:08Z) - Using Representation Expressiveness and Learnability to Evaluate
Self-Supervised Learning Methods [61.49061000562676]
We introduce Cluster Learnability (CL) to assess learnability.
CL is measured in terms of the performance of a KNN trained to predict labels obtained by clustering the representations with K-means.
We find that CL better correlates with in-distribution model performance than other competing recent evaluation schemes.
arXiv Detail & Related papers (2022-06-02T19:05:13Z) - The CLEAR Benchmark: Continual LEArning on Real-World Imagery [77.98377088698984]
Continual learning (CL) is widely regarded as crucial challenge for lifelong AI.
We introduce CLEAR, the first continual image classification benchmark dataset with a natural temporal evolution of visual concepts.
We find that a simple unsupervised pre-training step can already boost state-of-the-art CL algorithms.
arXiv Detail & Related papers (2022-01-17T09:09:09Z) - Enhancing Knowledge Tracing via Adversarial Training [5.461665809706664]
We study the problem of knowledge tracing (KT) where the goal is to trace the students' knowledge mastery over time.
Recent advances on KT have increasingly concentrated on exploring deep neural networks (DNNs) to improve the performance of KT.
We propose an efficient AT based KT method (ATKT) to enhance KT model's generalization and thus push the limit of KT.
arXiv Detail & Related papers (2021-08-10T03:35:13Z) - BKT-LSTM: Efficient Student Modeling for knowledge tracing and student
performance prediction [0.24366811507669117]
We propose an efficient student model called BKT-LSTM.
It contains three meaningful components: individual textitskill mastery assessed by BKT, textitability profile (learning transfer across skills) detected by k-means clustering and textitproblem difficulty.
arXiv Detail & Related papers (2020-12-22T18:05:36Z) - Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier [68.38233199030908]
Long-tail recognition tackles the natural non-uniformly distributed data in realworld scenarios.
While moderns perform well on populated classes, its performance degrades significantly on tail classes.
Deep-RTC is proposed as a new solution to the long-tail problem, combining realism with hierarchical predictions.
arXiv Detail & Related papers (2020-07-20T05:57:42Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
We propose to adopt the post-hoc method to tackle the interpretability issue for deep learning based knowledge tracing (DLKT) models.
Specifically, we focus on applying the layer-wise relevance propagation (LRP) method to interpret RNN-based DLKT model.
Experiment results show the feasibility using the LRP method for interpreting the DLKT model's predictions.
arXiv Detail & Related papers (2020-05-13T04:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.